
Django

Table of Contents

Section 8: Introduction to Django Framework ... 4

1. Introduction to Django Framework ... 4

2. How Django works ... 5

3. First Django Project .. 7

4. First Django Application (Apps) ... 7

Section 9: Django – Views, Routing, and URLs... 11

5. Introduction Views, Routing and URLs .. 11

6. Project Application Exercise .. 12

7. Views and URLs Overview .. 12

8. Function Based Views – Basics .. 13

9. Dynamic Views – Routing Logic ... 15

10. Path converters .. 18

11. Using ResponseNotFound and 404 Pages .. 19

12. Redirects Basics .. 23

13. Reverse URLs and URL Names ... 24

14. Connecting a View to a Template .. 26

Section 10: Django – Templates .. 29

15. Django and Templates .. 29

16. Template Directories (Important) ... 29

17. Variables in Templates ... 35

18. VS Code Django Extension .. 37

19. Filters... 38

20. Tags – For Loops ... 40

21. Tags – If, Elif, Else ... 43

22. Tags and URL Names in Templates .. 45

23. Templates Inheritance .. 46

24. Custom Error Templates ... 49

25. Static Files .. 51

Section 11: Django – Models, Database, and Queries .. 54

26. Introduction to Models and Database ... 54

27. Databases Overview ... 55

28. Models and Database ... 57

29. Models and Fields .. 59

30. Migration ... 61

31. Data Interaction: Creating and Inserting.. 63

32. Data Interaction: Using .all() Reading and Querying... 65

33. Data Interaction: Filtering filter() and get() .. 67

34. Data Interaction: Filtering with Field lookups .. 68

35. Data Interaction: Updating Models ... 70

36. Data Interaction: Updating Entries .. 73

37. Data Interaction: Deleting .. 74

38. Connecting Templates and Database Models .. 74

Section 12: Django – Admin.. 78

39. Introduction to Django Admin Section .. 78

40. Model and Website – Part one.. 79

41. Model and Website: Part Two .. 84

42. Django Administration ... 90

43. Django Admin and Models.. 91

Section 13: Django Forms ... 94

44. Introduction to Django Forms Section ... 94

45. GET, POST, and CSRF Overview ... 95

46. Django Form Class Basics .. 100

47. Django Forms – Templates Rendering ... 103

48. Django Forms – Widget and Styling ... 107

49. Django – ModelForm Class ... 113

50. Django – ModelForms Customization .. 117

Section 14: Django Class Based Views... 121

51. Introduction to Class Based Views .. 121

52. Django CBV – TemplateView... 122

53. Django CBV – FormView ... 124

54. Django CBV – CreateView ... 129

55. Django CBV – ListView .. 132

56. Django DBV – DetailView .. 136

57. Django CBV – Update ... 139

58. Django CBV – Delete ... 143

Section 15: User Authentication and Session ... 147

59. Project Skeleton ... 147

60. Model Setup .. 147

61. Admin Setup .. 150

62. Page Setup ... 151

63. User Authentication with Django User Model ... 156

64. User Authentication on Views .. 160

65. User Registration and Forms ... 165

66. User Specific Page .. 167

Section 16: Django Linode Deployment ... 170

67. Introduction Linode Deployment .. 170

68. Linode Setup .. 172

69. SSH Connection .. 172

70. Version Control with git and GitHub.. 173

Section 8: Introduction to Django Framework

1. Introduction to Django Framework

Was created by Adrian Holovaty and Simon Willison who is fan from Django Reinhardt
(Jazz - musician)

→ Back-End Framework with Python language for creating web application
→ Django can interact with our web applications to send information to the user of the
web application

Why using Django:

Key Features:

- Allows for fast development
- Many common features included
- Updated often and secure
- Very scalable
- Very versatile with Python

Lots of built-in functionality:

- Administration
- Authentication
- Database Interaction
- Security

Allow to use all the methods and modules of Python

Who uses Django?

- Instagram
- Spotify
- YouTube
- Pinterest
- DropBox
- EventBrite
- And many more

2. How Django works

Key Features of Django:
- Model-Template-View (MTV) Structure

o ORM–Object–relational Mapper
o Models
o URLs and Views
o Templates

Model Section/ View Section/ Template Section

Creating many Applications:

Django structure will also have many more features not shown in this MTV diagram,
such as authentication and administration

Django Drawbacks:

- Heavily reliant on idea of Model
- The model is a Python/Django representation of a table in a database
- This makes it very easy to work with querying data, but does add the requirement

of understanding Models and setting them up for views

3. First Django Project

At the command prompt, navigate to your desired location and type:
- django_admin → to see available subcommands
- django-admin startproject my_site

This creates the following files and folders

- my_site (root of the project, rename possible, doesn’t matter to Django)
o my_site
o manage.py (manage the project)

my_site:
- my_site

o __init.py__
o settings.py
o urls.py
o asgi.py
o wsgi.py

- manage.py

→ mkdir foldername
→ cd foldername

Make sure your environment is activated by running a new terminal

→ django-admin startproject your_project

Runserver:

→ python manage.py runserver (option: Server number)

4. First Django Application (Apps)

Django Projects can have separated components called “apps”
- Don’t get confused by this nomenclature!
- Typically, a “web app” describes the full website or mobile application on the web
- A “Django app” is a sub-component of a single Django Project (web application)

→ Often it becomes much easier to organise your code through the use of apps
→ Each app should cover a different key functionality for your website

→ Also keep in mind that if you are beginning as a solo developer with a simple website,
it may make more sense to put everything under a single Django app

→ Managing applications by separating out into Django apps in order to keep
these subcomponents organised by functionality

Creating apps:

→ python manage.py startapp app_name

Reminder! Make sure you are at the right directory

Creation an example App and connect it to a URL view

!

Let’s begin:

→ Go to my_app (new application)
→ enter index function and import HttpResponse in views.py:
Created an Function based view

from django.shortcuts import render

from django.http import HttpResponse

Create your views here.

def index(request):

 return HttpResponse("Hello this is a view inside my app")

def index(request):

return render(request, 'index.html')

Creating a file on my_app
→ cd my_app
→ touch urls.py

→ Go to urls.py
→ from django.urls import path
And because you are in the same directory as your views.py inside my_app, you can
simply say
→ from . import views
(Other way is: from views import index)
→ enter urlpatterns =

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='index') #/my_apps --> PROJECT urls.py

]

Connect urls.py from my_app with project urls.py:

Follow the instruction by including another URLconf

"""stars URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:

 https://docs.djangoproject.com/en/4.1/topics/http/urls/

Examples:

Function views

 1. Add an import: from my_app import views

 2. Add a URL to urlpatterns: path('', views.home, name='home')

Class-based views

 1. Add an import: from other_app.views import Home

 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')

Including another URLconf

 1. Import the include() function: from django.urls import include, path

 2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))

"""

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('my_app/', include('my_app.urls')),

 path('admin/', admin.site.urls),

]

Summary:

I created a very simple, function-based view inside of my_app. I created a new URLs
that file also inside of my_app. Then I used project level URLs that profile and included
and connected the other URL configuration through these following lines of code

NEXT run the sever! Reminder make sure you have saved all your changes

→ python manage.py runserver
→ Go on browser http://127.0.0.1:8000/
→ Add on path http://127.0.0.1:8000/my_app/ → "Hello this is a view inside my app"

Section 9: Django – Views, Routing, and URLs

5. Introduction Views, Routing and URLs

http://127.0.0.1:8000/
http://127.0.0.1:8000/my_app/

Section Overview:
- Project and App review
- Routes and URLs
- Basic Function Views
- Dynamic Views and View Logic
- Redirects and 404s
- URL names and reverse()
- Connecting to Templates

Focus on function-based view

6. Project Application Exercise

Create project:
→ cd foldername
→ django-admin startproject my_site

Create app:
→ cd my_site
→ python manage.py startapp first_app

7. Views and URLs Overview

In Django, Views dictate what information is being shown to the client, and
URLs dictate where that information is shown on the website

These work in concert so you can think of each View/URL pairing as a web page on the
website

- Keep in mind that not every permutation of a webpage can be known in advance,
for example, “How many total blog posts will a website blog eventually have?”

- Django Views and URLs support a lot of dynamic and logic features to help with
this sort of task

- Recall that we have URL configurations at a Project level and at an App level.
- We connect these through the use of path() and include() Django functions
- A list of view routes is defined in a list variable called urlpatterns

Connecting a View to a URL with path():

- Route
o String code that contains the URL pattern
o Django will scan the relevant urlpatterns list until if find a matching string

route (e.g.,“app/”)
- View

o Once a matching route is found, the view argument connects to a function
or view, typically defined in the views.py file of the relevant Django app

- kwargs
o Allow us to pass in keyword arguments as dictionary to the view

- name
o Allow us to name a URL in order to reference it elsewhere in Django

8. Function Based Views – Basics

On App:

View.py:

from django.shortcuts import render

from django.http.response import HttpResponse

Create your views here.

def simple_view(request):

 return HttpResponse("Simple View")

Connect with function-based view on urls.py:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.simple_view)

]

On Project:

urls.py:

"""my_site URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:

 https://docs.djangoproject.com/en/4.1/topics/http/urls/

Examples:

Function views

 1. Add an import: from my_app import views

 2. Add a URL to urlpatterns: path('', views.home, name='home')

Class-based views

 1. Add an import: from other_app.views import Home

 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')

Including another URLconf

 1. Import the include() function: from django.urls import include, path

 2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))

"""

from django.contrib import admin

from django.http.response import HttpResponse

from django.urls import path, include

from . import views #created view.py on project level as third way for creating views

without using view and url from an app

showing function to the client by calling it in path without including/importing function from the app

def say_again_hallo(request):

 return HttpResponse("Hallo again")

urlpatterns = [

 path('admin/', admin.site.urls),

 path('first_app/', include('first_app.urls')),

calling function without string route and include

 path('', say_again_hallo),

path('', views.project_level_view) #created function on views.py (project level) as third way for showing view on

browser

]

Different:

Direct way without using an app: Only in urls.py project level

Just run server and see the output: http://127.0.0.1:8000/

Direct way without using an app: Created views.py on project level

Just run server and see the output: http://127.0.0.1:8000/

Normal way with app: urls.py and views.py from app level

Runserver and apply http://127.0.0.1:8000/my_app/

9. Dynamic Views – Routing Logic

http://127.0.0.1:8000/
http://127.0.0.1:8000/
http://127.0.0.1:8000/my_app/

Possible to use dynamic views by starting to integrate the idea of different python
objects within views and using Python code and logic. Furthermore, it is possible to
have user dynamically updated routing and views.

Several function-based views:

On views.py app level

from django.shortcuts import render

from django.http.response import HttpResponse

Create your views here.

def simple_view(request):

 return HttpResponse("Simple View")

def different_view(request):

 return HttpResponse("Second View")

Connect to URLs on app level:

from django.urls import path

from . import views

urlpatterns = [

 path('simple/', views.simple_view),

 path('different/', views.different_view)

]

Connect to URLs on project level:

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('first_app/', include('first_app.urls'))

]

Dynamic view with dictionary:

On views.py app level

→ Using a dictionary

articles = {
 ‘sports’ : ‘Sports Page’,
 ‘finance’ : ‘Finance Page’,
 ‘general’ : General Page

→ Function news_view with parameter: topic

from django.shortcuts import render

from django.http.response import HttpResponse

Create your views here.

articles = {'finance' : 'Finance Page',

 'sports' : 'Sports Page',

 'general' : 'General Page',

}

def news_view(request, topic):

 return HttpResponse(articles[topic])

Connect to URLs app level:
Allow user to enter topic in browser with races brackets → <>/

from django.urls import path

from . import views

urlpatterns = [

 path('<topic>/', views.news_view)

]

Connect to URLs on project level:
Same as above!!

urlpatterns = [

 path('admin/', admin.site.urls),

 path('first_app/', include('first_app.urls'))

]

Don’t forget to run the server!

Enter after app_name/topic
→ for example topic = finance

Output:

Dynamically updating view by user:

Allow only proper types:

10. Path converters

The following path converters are available by default:

• str - Matches any non-empty string, excluding the path separator, '/'. This is the default if
a converter isn’t included in the expression.

• int - Matches zero or any positive integer. Returns an int.

• slug - Matches any slug string consisting of ASCII letters or numbers, plus the hyphen and
underscore characters. For example, building-your-1st-django-site.

• uuid - Matches a formatted UUID. To prevent multiple URLs from mapping to the same
page, dashes must be included and letters must be lowercase. For example, 075194d3-
6885-417e-a8a8-6c931e272f00. Returns a UUID instance.

• path - Matches any non-empty string, including the path separator, '/'. This allows you to
match against a complete URL path rather than a segment of a URL path as with str.

On views.py app level:

def add_view(request, num1, num2):

 add_result= num1 + num2

https://docs.python.org/3/library/uuid.html#uuid.UUID

 result = f"{num1} + {num2} = {add_result}"

 return HttpResponse(result)

Connect to URLs on app level:
Important: Assigning types → int for numbers

from django.urls import path

from . import views

urlpatterns = [

 path('<str:topic>', views.news_view),

 path('<int:num1>/<int:num2>', views.add_view)

]

Connect to URLs on project level:
Same as above!!

urlpatterns = [

 path('admin/', admin.site.urls),

 path('first_app/', include('first_app.urls'))

]

Output:

11. Using ResponseNotFound and 404 Pages

Inevitably there will be a time when a client requests a web page view that does not
exist, or the client did not provide the correct URL route

In these cases, we can use HttpResponseNotFound() to still return a webpage for the
user

Django also has a default 404 page we can display
Later on when we dive deeper into templates we’ll see how to create our own custom
404 page

Using HttpResponseNotFound:

With try and expect command for raising errors!

On views.py app level

Important → import class HttpResponseNotFound

from django.shortcuts import render

from django.http.response import HttpResponse, HttpResponseNotFound

Create your views here.

articles = {'finance' : 'Finance Page',

 'sports' : 'Sports Page',

 'general' : 'General Page',

}

def news_view(request, topic):

 try:

 return HttpResponse(articles[topic])

 except:

 return HttpResponseNotFound('Topic doesn\'t exist')

On URLs app level:
Same as above!

from django.urls import path

from . import views

urlpatterns = [

 path('<str:topic>', views.news_view),

 path('<int:num1>/<int:num2>', views.add_view)

]

On URLs project level:
Same as above

urlpatterns = [

 path('admin/', admin.site.urls),

 path('first_app/', include('first_app.urls'))

]

Output:

By entering topic = politics (doesn’t exist)

Using Http404:

Hint: raise Http404 and import class Http404

For convenience, and because it’s a good idea to have a consistent 404 error page
across your site, Django provides an Http404 exception. If you raise Http404 at any
point in a view function, Django will catch it and return the standard error page for your
application, along with an HTTP error code 404.

Example usage:

from django.shortcuts import render

from django.http.response import HttpResponse, HttpResponseNotFound, Http404

Create your views here.

articles = {'finance' : 'Finance Page',

 'sports' : 'Sports Page',

 'general' : 'General Page',

}

def news_view(request, topic):

 try:

 return HttpResponse(articles[topic])

 except:

 raise Http404('404 Generic Error') # 404.html

In order to show customized HTML when Django returns a 404, you can create an
HTML template named 404.html and place it in the top level of your template tree. This
template will then be served when DEBUG is set to False.

When DEBUG is True, you can provide a message to Http404 and it will appear in the
standard 404 debug template. Use these messages for debugging purposes; they
generally aren’t suitable for use in a production 404 template.

Not suitable for the general public as too much information with DEBUG = True →
Output:

→ Therefore, change settings:

SECURITY WARNING: don't run with debug turned on in production!

DEBUG = True

ALLOWED_HOSTS = []

→ DEBUG = FALSE

ALLOWD_HOST = [‘127.0.0.1’] # allow your host as show an error: CommandError:
You must set settings.ALLOWED_HOSTS if DEBUG is False.

DEBUG = False

ALLOWED_HOSTS = [‘127.0.0.1’]

Output:

Steps:

→ In the beginning using HttpResponseNotFound, especially if you are debugging
things
→ later on, using Generic Error with Http404
→ linking to our own custom forum for each HTML template

12. Redirects Basics

Sometimes a client user will provide a path that we want to redirect to another webpage
on our site

This can be accomplished in Django through the use of the HttpResponseRedirect()
function

Let’s imagine that we want to match our website newspaper article pages to the
numeric page in the physical newspaper for readers to quickly find an article online

For example, if Finance was on page 2 of the newspaper, we want to redirect
first_app/2/ to first_app/finance/.

Note!
→ The example shown here is not the typical way we’ll redirect pages, it is
actually error-prone, which we’ll talk about in the lecture

Idea:

domain.com/first_app/0 → domain.com/first_app/finance

Views.py app level:

Hint: import HttpResponseRedirect

def num_page_view(request, num_page):

 topic_list = list(articles.keys()) # ['finance', 'sports', 'general']

 topic = topic_list[num_page]

 return HttpResponseRedirect(topic)

URLs app level:

from django.urls import path

from . import views

urlpatterns = [

 path('<int:num_page>', views.num_page_view), #new path

 path('<str:topic>', views.news_view),

 path('<int:num1>/<int:num2>', views.add_view)

]

URLs project level:
Still the same!

13. Reverse URLs and URL Names

As our website get larger and more complex, we’ll keep adding more views and more
URLs across the project and apps

This leads to more instances where we’ll need to reference existing pages (URLs on
across our website)

In this lecture we’ll explore two key ideas:
URL Path inside the path() function can have names across Django and inside of a
template

Django has a reverse() function to find the corresponding URL path for URL name

We are inside of views and the idea is to get the path/name/reference by looking what
is happening inside URLs for this URLs name!

Let’s name a URL and then use it inside a reverse() call for Django

On URLs app level:

from django.urls import path

from . import views

urlpatterns = [

 path('<int:num_page>', views.num_page_view),

 path('<str:topic>', views.news_view, name='topic-page'),

 # new keyword argument kwargs -> name='topic-page' give the URLs Path a name for reference in views.py

 path('<int:num1>/<int:num2>', views.add_view)

]

On views app level:

Hint: args=[…] # always pass argument in a list, even if it’s just one item

args=[topic] # see on URLs Path for the argument →’<str:topic>’

Important: import reverse()

from django.urls import reverse

def num_page_view(request, num_page):

 topic_list = list(articles.keys()) # ['finance', 'sports', 'general']

 topic = topic_list[num_page]

 webpage = reverse('topic-page', args=[topic])

 return HttpResponseRedirect(webpage)

less code →

return HttpResponseRedirect(reverse('topic-page', args=[topic]))

The idea is: reverse function looks up that URL Path and send then these arguments
→ Redirect is much cleaner, much easier to read and much better for maintenance

14. Connecting a View to a Template

Realistically we don’t want to have to manually type out HTML code or HTTP
Responses inside our views.py file

Instead we would like to separate out all our templates (HTML files) into a separate
directory and have views communicate between this directory and render the templates

Connecting to template directory requires us to inform the Django project settings where
to find these templates

In this simple example, we’ll store all the templates at a project level

Later on we’ll explore how to store templates on a Django app level (recommended way
of doing things)

In this lecture we’ll:

- Create a new templates directory
- Create an example .html file

- Connect to that .html within the view
- Inform the Django project where to find this template directory inside of

settings.py

Created templates folder and first_app folder inside of templates to create an
.html file (example.html)

On settings.py:
Import os

→ Templates → os.path.join(BASE_DIR, ‘templates’)

TEMPLATES = [

 {

 'BACKEND': 'django.template.backends.django.DjangoTemplates',

 'DIRS': [os.path.join(BASE_DIR,'templates')], # in order to look fot html files in this directory as well

 'APP_DIRS': True,

 'OPTIONS': {

 'context_processors': [

 'django.template.context_processors.debug',

 'django.template.context_processors.request',

 'django.contrib.auth.context_processors.auth',

 'django.contrib.messages.context_processors.messages',

],

 },

 },

]

In views.py app level:

Hint: uses render for requesting .html file (import render)

from django.shortcuts import render

from django.http.response import HttpResponse, HttpResponseNotFound, Http404, HttpResponseRedirect

from django.urls import reverse

Create your views here.

def simple_view(request):

 return render(request, 'first_app/example.html') # .html

Inside in URLs app level:

from django.urls import path

from . import views

urlpatterns = [

 path('', views.simple_view) # domain.com/first_app

]

On example.HTML:

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

<body>

 <h1> Hallo HTML!!</h1>

</body>

</html>

Output:

Section 10: Django – Templates

15. Django and Templates

In this section we’ll begin to explore how to connect our Django views code to templates
files (HTML)

This will allow us to take advantage of HTML, CSS, and even JS along with any
backend Python logic

Section Overview:

- Template Directories
- Template Rendering
- Django Template Language

o Context Insertion
o Filters and Tags
o URL Names in Templates
o Templates Inheritance
o Template Specifics

▪ Static Files
▪ Custom 404 Templates

o Templates Exercise

16. Template Directories (Important)

In the previous section we explored a very basic way to connect a view to an existing
template file

Usually, however, we would like to separate out template folders based on their
application rather than have a single template folder for the entire project

Separating out template directories by app is more ideal because in the future you may
want to reuse a Django app in a future project

Having everything in its own app directory makes this reuse easy

In order for the Django Project to be aware of the app’s template directory existence, we
do need to register the custom Django app in the settings.py under the
INSTALLED_APPS variable

Let’s describe the process to create a template directory for a custom Django app
before we walk through it in our code editor

Important Note: Many of these steps won’t do anything for us right now with templates,
but are important later on for models, so we’ll run them anyways.

• Step One:
o Setup the Django App

▪ Create App Directory with manage.py startapp
command

▪ Create the relevant URLs and Views
▪ Map the App URLs to the Project URLs

→ Already done before!

• Step Two:
o Run the migrate command

▪ python manage.py migrate
o This command looks at INSTALLED_APPS in settings and

creates any necessary database tables

→ DATABASE AND MODELS

• Step Three:
o Inside of Django App check the apps.py created automatically

for you and register the AppConfig class to INSTALLED_APPS
inside of settings.py

→ Linking to let your project be aware of the app directories, which will
eventually let it be aware of the template directory inside the app

• Step Four:
o Register the app and any database changes with Django by

running:
▪ python manage.py makemigrations myapp

o Note, this won’t be relevant for us until we have actually created
models

• Step Five:
o Run python manage.py migrate again to create the model

tables in our database
o Again, not necessary for us yet, but will be once we create

models

• Step Six:
o Create a template directory inside your app directory with

structure:
▪ my_site

• my_app
o templates

▪ my_app

• example.html

Why does my_app appear twice?

Often, you’ll have multiple template files with the same name (multiple index.html files,
one for each app index view page).

Because of the way Django searches for matching template names, to make sure we
get the relevant template for an app, we create the app subdirectory underneath the
template folder. As Django will choose the first template it finds whose name matches,
and if you had a template with the same name in a different application, Django would
be unable to distinguish between them. Hence, the best way to point Django at the right
one is by namespacing them.

Steps:

One:

→ mkdir projectname
→ cd projectname
→ django-admin startproject my_projectname
→ cd my_projectname
→ python manage.py startapp my_app
→ cd my_app
→ touch urls.py (create a urls.py file in my_app)
→ create function in views.py (app level)

from django.shortcuts import render

Create your views here.

def example_view(request):

 # my_app/templates/my_app/example.html (later on telling Django we have templates directory underneath my

app)

 return render(request, 'my_app/example.html') # 'my_app/example.html' connect to template

→ go to urls.py in my_app
→ code path

from django.urls import path

from . import views

urlpatterns = [

 path('', views.example_view)

]

→ including URLconf in urls.py (project_level)
→ path(‘my_app/’, include(‘my_app.urls’)) look below:

Including another URLconf

 1. Import the include() function: from django.urls import include, path

 2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))

"""

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('my_app/', include('my_app.urls'))

]

Two:

→ on projectname directory
→ python manage.py migrate

Three:

→ check the apps.py if app is created automatically for you (MyAppConfig)

from django.apps import AppConfig

class MyAppConfig(AppConfig): # converts automatically the kenel casing name (this is gonna be my installed app)

 default_auto_field = 'django.db.models.BigAutoField'

 name = 'my_app'

→ settings.py (project level)
→ go to list INSTALLED_APPS
→ register my_app in the list
→ ‘my_app.apps.MyAppConfig’

Application definition

INSTALLED_APPS = [

 'my_app.apps.MyAppConfig', # Django will connect with templates, views and so on

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

]

Four:

→ Register the app and any database changes with Django by running → python
manage.py makemigrations my_app

Because no models:
NO CHANGES!

Five:

→ If changes have been done then push those changes with: → python manage.py
migrate

Six:

→ Create a template directory inside your app directory with structure:

• my_site
o my_app

▪ templates

• my_app
o example.html

→ example.html
→ doc: automatically create html code
→ body: <h1>HTML file is connected</h1>

Seven:

→ python manage.py runserver
→ start browser http://127.0.0.1:8000/my_app

17. Variables in Templates

Let’s explore how to render templates and send a context variable to the HTML with the
Django Template Language

→ create new html in template folder
→ variables.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

<body>

 <h1> New Variables</h1>

</body>

</html>

→ views.py (app level)

def variable_view(request):

 return render(request, 'my_app/variables.html')

→ urls.py (app level)

urlpatterns = [

 path('', views.example_view),

 path('variable/', views.variable_view)

]

→ done!!

Function with dictionary to represent the values of them:

On view.py:

def variable_view(request):

 my_var = {'first_name': 'Rosallind', 'last_name' : 'Franklin',

 'some_list': [1,2,3], 'some_dict':{'inside_key': 'inside_value'}

 }

 return render(request, 'my_app/variables.html', context=my_var)

On variable.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

<body>

 <h1> New Variables</h1>

 <h2> The name of the princess is: {{first_name}} {{last_name}}</h2>

 <p>Furthermore I wisch my list is: {{some_list}}</p>

 Maybe, I would like to receive the third item of the list: {{some_list.2}}

 A dictionary inside in a dictionary?? Kinda cool: {{some_dict}}

 I wish, I could just see the value of the dict in the dict

 <p>Here we are: {{some_dict.inside_key}}</p>

 <p>command: Django language: {# just commands #}</p>

 <p>comannd: HTML languages: <!-- just commands --></p>

</body>

</html>

Output:

For representing variables use two sets of curly braces {{}}

If you have a list or dictionary, you want to reference something inside then use
dot notation . and put the the number for the index or the key for the value

18. VS Code Django Extension

Use Django extension for enable Django syntax for clearing the visibility

With extension:

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

<body>

 <h1> New Variables</h1>

 <h2> The name of the princess is: {{first_name}} {{last_name}}</h2>

 <p>Furthermore I wisch my list is: {{some_list}}</p>

 Maybe, I would like to receive the third item of the list: {{some_list.2}}

 A dictionary inside in a dictionary?? Kinda cool: {{some_dict}}

 I wish I could jsut see the value of the dict in the dict

 <p>Here we are: {{some_dict.inside_key}}</p>

 <p>command: Django language: {# just commands #}</p>

 <p>comannd: HTML languages: <!-- just commands --></p>

</body>

</html>

Look up to lecture above for the different

19. Filters

Filters are built-in modifiers in Django templating that allow you to quickly apply a
change to a variable on the template side, rather than in your Python script

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/

upper or length and so on

<body>

 <h1> New Variables</h1>

 <h2> The name of the princess is: {{first_name | upper }} {{last_name | length}}</h2>

 <p>Furthermore I wisch my list is: {{some_list}}</p>

 Maybe, I would like to receive the third item of the list: {{some_list.2}}

 A dictionary inside in a dictionary?? Kinda cool: {{some_dict}}

 I wish I could jsut see the value of the dict in the dict

 <p>Here we are: {{some_dict.inside_key}}</p>

 <p>command: Django language: {# just commands #}</p>

 <p>comannd: HTML languages: <!-- just commands --></p>

</body>

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/

</html>

Output

Also possible: 2 filters for one value

my_var = {'first_name': 'rosaLind', 'last_name' : 'Franklin',

look at rosaLind!

Change it with two filters at html side

{{first_name | lower | capfirst}}

<h1> New Variables</h1>

 <h2> The name of the princess is: {{first_name | lower | capfirst}} {{last_name | length}}</h2>

 <p>Furthermore I wisch my list is: {{some_list}}</p>

 Maybe, I would like to receive the third item of the list: {{some_list.2}}

 A dictionary inside in a dictionary?? Kinda cool: {{some_dict}}

 I wish I could jsut see the value of the dict in the dict

 <p>Here we are: {{some_dict.inside_key}}</p>

 <p>command: Django language: {# just commands #}</p>

 <p>comannd: HTML languages: <!-- just commands --></p>

Output:

20. Tags – For Loops

Django Tags are able to provide further logic at the template in the rendering process.

This includes a lot functionalities, such as for loops, if-else statements, and linking to
URLs.

Let’s begin by exploring for-loop tags.

Tags: { % …%}

<body>

 <h1> New Variables</h1>

 {% for item in some_list %}

 <h1>{{item}}</h1>

 {% endfor %}

</body>

Output:

Look at the page source for understanding what the HTML page is showing

Unsorted List with for loop:

ody>

 <h1> New Variables</h1>

 {% for item in some_list %}

 {{item}}

 {% endfor %}

</body>

</html>

Output:

HINT: Always checking the source code if you get stuck

Documentation:

https://docs.djangoproject.com/en/4.1/topics/templates/

Looping through the dictionary:

<body>

 <h1> New Variables</h1>

 {% for k, v in some_dict.items %}

 {{k}} : {{v}}

https://docs.djangoproject.com/en/4.1/topics/templates/

 {% endfor %}

</body>

</html>

21. Tags – If, Elif, Else

Django also has if, elif, and else tags

We can use Boolean and comparison operators along with these tags, for example

- ==, or, and, not, >=

Similar to the Django Tag for loops, we will need an end Tag if statements

- {% if var == True %}
o HTML CODE

- {% endif %}

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/#if

IF user logged in
THEN print Welcome back
END IF

On views.py

def variable_view(request):

 my_var = {'first_name': 'rosaLind', 'last_name' : 'Franklin',

 'some_list': [1,2,3], 'some_dict':{'inside_key': 'inside_value'}, 'user_logged_in' : True

 }

 return render(request, 'my_app/variables.html', context=my_var)

On html file

<body>

 <h1> New Variables</h1>

https://docs.djangoproject.com/en/4.1/ref/templates/builtins/#if

 {% if user_logged_in %}

 <h1>Welcome back you are logged in</h1>

 {% endif %}

</body>

Output:

By false the screen doesn’t show anything:

my_var = {'first_name': 'rosaLind', 'last_name' : 'Franklin',

 'some_list': [1,2,3], 'some_dict':{'inside_key': 'inside_value'}, 'user_logged_in' : False

 }

Output:

If and for loop together:

<body>

 <h1> New Variables</h1>

 {% for num in some_list %}

 {% if num == 2 %}

 TWO

 {% else %}

 {{num}}

 {% endif %}

 {% endfor %}

</body>

</html>

Output:

HINT: Space between the operators, variables and statements to avoid errors

22. Tags and URL Names in Templates

Recall in the path() function call we could assign names to URLs

This in turn allows us to use the {% url %} tag to easily create links to other pages
based on their URL name in urls.py

Let’s explore how this works!

Step one:

→ Add the app name inside of URLs.py

Urls.py app level
→ app_name = ‘my_app’

from django.urls import path

from . import views

register the app namespace

URL NAMES

app_name = 'my_app'

urlpatterns = [

 path('', views.example_view),

 path('variable/', views.variable_view)

]

Step two:

→ Gives these paths names that we can use

urlpatterns = [

 path('', views.example_view, name='example'),

 path('variable/', views.variable_view, name='variable')

]

Step three:

→ link url path to the html file

<body>

 <h1> VARIABLES HTML TEMPLATE</h1>

 <h1> Click me to go to example </h1>

</body>

If html file is on project level:

without app name

Click me to go to example

23. Templates Inheritance

Typically, you don’t want to have every single template hold repetitive information, such
as the navigation bar at the top of your website.

Instead, we can inherit these components through the use of the Django {%block%}
tag.

What is pretty common is to have a base that each HTML file on a project level
and then base each HTML files on an application level, each of which actually
extend or inherit from the project base that each HTML

Step One:

→ Create templates folder on project level
→ Create html file in template folder

Step Two:

→ import os in settings.py
→ enter in Template section ‘DIRS’: [os.path.join(BASE_DIR, ‘templates’)] in order to
let Django search template files on project level

Step Three:

→ build generally content like navigation and so on, on base html for all the html sites
→ create content which should only be displayed on base.html site

{% block content %}
 …..

{% endblock %}

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>base title</title>

</head>

<body>

 <h1> This is above the block in base.html </h1>

 {% block content %} {# content be named anything else #}

 {# everthing here inside is blank #}

 {% endblock %}

 <h1> This is below the block in base.html </h1>

</body>

</html>

Step Four:

inheriting base.html content in my_app html sites

→ go to example.html (html on my_app level)
→ use extend commend in order to inherit the content from base.html {% extends
‘base.html’)

{% extends 'base.html' %}

{% block content %}

<h1> This is inside the block in example.html </h1>

{% endblock %}

Output on example.html

Base.html on project level → see 8. Function Based Views – Basics
See also → 14. Connecting a View to a Template for importing os and set the
settings for connecting templates on project level

24. Custom Error Templates

Many pages, such admin or 404 pages have built-in templates provided by Django for
your convenience

However, we have the ability to overwrite any of these built-in templates

Let’s explore an example of this by overriding the default 404 template

Recommendation:

However, the best way to do it is calling the template 404 each HTML and setting up
your handler!
→ so its handler 404, then the pathway handler404 =
'mysite.views.my_custom_page_not_found_view' to find your custom view and then you
have a view specifically taking in that exception an registering that status with a
particular HTML file

Steps:

→ Create 404.html file in templates folder project level

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>404 ERROR</title>

</head>

<body>

 <h1> Custom 404.html view -> Page not found LOL</h1>

</body>

</html>

→ Create views.py on project level

from django.shortcuts import render

def base_view(request):

 return render(request, 'base.html')

def my_custom_page_not_found_view(request, exception):

 return render(request, '404.html', status=404)

→ add handler404 in URLs project level under path

from django.contrib import admin

from django.urls import path, include

from . import views

urlpatterns = [

 path('admin/', admin.site.urls),

 path('my_app/', include('my_app.urls')),

 path('', views.base_view)

]

handler404 = 'step_site.views.my_custom_page_not_found_view'

→ setting DEBUG = False:

In order to show customized HTML when Django returns a 404, you can create an
HTML template named 404.html and place it in the top level of your template tree. This
template will then be served when DEBUG is set to False.

SECURITY WARNING: don't run with debug turned on in production!

DEBUG = True

ALLOWED_HOSTS = []

→ DEBUG = FALSE

ALLOWD_HOST = [‘127.0.0.1’] # allow your host as show an error: CommandError:
You must set settings.ALLOWED_HOSTS if DEBUG is False.

DEBUG = False

ALLOWED_HOSTS = [‘127.0.0.1’]

Output:

25. Static Files

Most projects will have static files, such as images, JS, or CSS

Django can serve these static files through the use of Tags, instead of having to refer to
a full file path

This is similar to the {% url %} tag, but using a {% static %} tag

For this lecture you’ll need to download or create some sort of static file

Our example will use a .jpg image, but the same logic applies to any static file

This is just a generic method to let your templates know the location of any static file
(.css file, .js file, .jpg file, etc…)

Steps:

→ On settings.py check if static has the path STATIC_URL = ‘static/’

Static files (CSS, JavaScript, Images)

https://docs.djangoproject.com/en/4.1/howto/static-files/

my_app/static/my_app/django.jpg

STATIC_URL = 'static/'

→ Create static folder in my_app (app level) and call static!
Hint: create another folder under static → my_app

- Static
o my_app

→ Add for instance an image.jpg into static/my_app folder

→ link static path to a html file with
 {% load static %}

 <img src=”{% static ‘my_app/django.jpg’ %)”…

Usable for any source… CSS file, JS file, JPEG, file etc.

Hint: best way to load all these files is to load it to the base.html (project level)

CSS file not found. Django project level

Check Your path again,

If it's correct Follow the Guidelines to Include CSS in Django Project
Static files are intended to wrap CSS files and your images, Django automatically
identifies this file.

1. Create static folder in your app folder, same directory as of migrations and
template folder

2. Create css Folder and insert it into static Folder
3. Now put your styles.css into css folder
4. Now in your HTML File where you want to include CSS, add {% load static %} On

the top of HTML File and Your Path should be like this <link rel="stylesheet"
href="{% static 'css/styles.css' %}"> in HTML file.

5. Then Make Change To Your settings.py in projectfoldername with-

STATIC_URL = '/static/'
STATICFILES_DIRS = [os.path.join(BASE_DIR,'static')]

#STATIC_ROOT = os.path.join(BASE_DIR, 'assets') nur wenn es nicht klappt
You static file will be copied to New file created by django as assets.

Then Run this command

python manage.py collectstatic

 {% extends 'base.html' %}

{% load static %}

{% block content %}

<h1> This is inside the block in example.html </h1>

{% endblock %}

→ refresh the server and run the server again

Hint: If you change or edited anything in settings.py or you are doing something that has
a lot do with settings.py just do yourself a favor and then restart the development server

Output:

Section 11: Django – Models, Database, and Queries

26. Introduction to Models and Database

Models allow us to interact with a database with Python and Django

This includes the key interactions with database – CRUD:

- CREATE
- READ
- UDATE
- DELETE

In this section we’ll be exploring how to store, retrieve, update, and delete data from a
SQL based database using Django’s built-in tools and functionality

Section Overview

- Database Overview
- Models and Database
- Creating Models and Fields
- Migration
- Data Interaction – CRUD
- Database and Template Interaction

27. Databases Overview

Put simply, databases allow us to store information that we can use on our website.

We should briefly cover how SQL based databases work so we can understand the
Django Models analogous operations that interact with the database.

SQL databases are tabular, similar to a spreadsheet, like Excel.

- But we often get questions like:
“What about NoSQL, such as MongoDB?”

- Let’s quickly explore the visual difference between two…

Which is better? NoSQL or SQL

- One format is not better than another, they are simply different
- Django Models is designed to work really well with a tabular SQL based format,

so that is what we will choose

For most applications SQL will be completely fine, and if you are beginning with Django
you should try to stick to SQL before making a jump to NoSQL

You should also carefully consider if NoSQL actually provides a major advantage to
your project

Now, what type of SQL to choose?

- There are lots of options!
o MySQL
o SQLite
o PostgreSQL
o MS SQL
o …and many more!

Django is pretty agnostic to most major SQL engines with the use of its Django Models
system, so switching to another SQL engine is more matter of updating settings.py
rather than rewriting the actual Python Django code.

Since this is the case, we’ll use SQLite as its already included and installed along with
Python

While typically thought of as a smaller scale SQL engine, for many uses cases SQLite
performs fine.

o www.sqlite.org/whentouse.html

From the official website of SQLite:

“Generally speaking, any site that gets fewer than 100k hits/day should work fine with
SQLite. The 100k hits/day figure is a conservative estimate, not a hard upper bound.
SQLite has been demonstrated to work with 10 time that amount of traffic.”

28. Models and Database

Django Models are defined inside a Django app (or project) models.py file.

The models class operates on a system which directly converts Python based code into
SQL commands

This makes it much easier to work with the backend database

Each database table has a name and then columns, where each column will have a
specific data type, for example: character strings for names or integers for ages in
years.

http://www.sqlite.org/whentouse.html

Let’s now explore how Django Models works in conjunction with these structures.

Django Model Key Concepts:

- Inherits from models class.
- Uses fields to define both data types and data constrains.

o For example, you may want to require information, like a user’s email
address, in which case you can add a NOT NULL constraint.

o You may want to require unique entries, like a unique user email (no
duplicate accounts) with UNIQUE constraint.

Let’s continue our discussion by exploring how to create a model and add fields.

Later on in future section we’ll be able to drastically advance our Django abilities by
automatically creating templates simply by connecting them to a model (Class Based
Views).

29. Models and Fields

In this lecture we will:
- Create a new project an app.
- Register a database in settings.
- Run a migrate command to create the database (python manage.py migrate).
- Create an example model with fields.

Let’s imagine we’ve been hired by a dentist office to create some software for their
office to keep track of patients.

It would be great if we could store patient information in a database, like their name and
age.

To do this, we’ll also be exploring the documentation as we code along, including:

- Setting up databases in settings.py.
- Different backend available.
- Different files that are available for Django Models.

Note, in the next lecture we’ll continue with a further discussion on migrations, including
the makemigrations command

Let’s get started!

→ Start new Project → django-admin startproject dentist_site
→ Start new app → python manage.py startapp office

→ Exploring Database settings:

Engine can be changed for example to PostgreSQL
Default →

Database

https://docs.djangoproject.com/en/4.1/ref/settings/#databases

DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.sqlite3',

 'NAME': BASE_DIR / 'db.sqlite3',

 }

}

https://docs.djangoproject.com/en/4.1/ref/settings/#databases

Other Databases than SQLite

https://docs.djangoproject.com/en/4.1/ref/databases/

→ In order to run the database, it needs to create the database file

→ with migrate command, the database will create

→ python manage.py migrate

Migrate command is looking at the installed apps settings and create any necessary
database tables according to the settings that you had under the database settings.

→ Django created db.sqlite3 file (actual database)

→ Open models.py

→ Create a database with model class

Hint: You can add more columns later on, but you always want to try to get as much
information as possible at the very beginning of your project, even if you don’t end up
collecting it

Hint: You need a bit of experience to figure out what are the fields that are available for
us, as well as what is the most

https://docs.djangoproject.com/en/4.1/ref/settings/#databases
https://docs.djangoproject.com/en/4.1/ref/databases/

Under Model field reference there a lot of field including the field options and field types
that Django offers.

https://docs.djangoproject.com/en/4.1/ref/models/fields/
With validators you can valid the input of the users. For example, nobody can be 1000
years old.

Validation will be introduced later on!

Simple model.py file:

from django.db import models

Create your models here.

class Patient(models.Model):

 first_name = models.CharField(max_length=30)

 last_name = models.CharField(max_length=30)

 age = models.IntegerField()

STEP 1 and STEP 2 are done!

STEP 3 → setting application on settings.py

30. Migration

In general, migrations is the act of connecting changes in your Django project or app to
the database

This includes things like adding new models within an application, adding a new
application, updating models with a new column/ attribute, and more.

You typically see these commands done through the manage.py file

Let’s discuss the migrate based commands you can run:

- makemigrations
- migrate
- sqlmigrate

→ python manage.py makemigration my_app

https://docs.djangoproject.com/en/4.1/ref/models/fields/

- This actually creates (but does not run) the set of instruction that will apply
changes to the database.

- Note, the default applications in Django (e.g. Admin, Auth) already have their
SQL makemigrations code ready (just not run yet).

- You can actually see these migration files created under:
o app

▪ migrations

• 0001_initial.py
→ python manage.py migrate

- Runs any existing migrations (typically created through the makemigrations
command).

- This is actually running the files under the migrations directory from the previous
command.

→ python manage.py sqlmigrate app 0001

- If you run makemigrations, then you’ve already created a migration.py code file
- If you wanted to see what the SQL code looked like, you could run the

sqlmigrate command to view it
- Useful for things like debugging or interfacing with some sort of database admin

Note that typically we won’t review the files created under the migrations directory or run
sqlmigrate, we’ll simply run makemigrations and migrate
You can think of the very first migrate command we run as executing the default
makemigrations that was already created for your upon creating the project

Steps for migrations:

- Initial projects migrate command
- Create app and create models
- Register app in INSTALLED_APPS in settings.py
- Run makemigrations for new app
- Run migrate for new migrations

Let’s explore these concepts based on the Patient model class created in the previous
lecture!

→ Register app in INSTALLED_APPS in settings.py

Application definition

INSTALLED_APPS = [

 'office.apps.OfficeConfig'

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

]

→ Run makemigrations my_app
→ python manage.py makemigrations office

Hint: under migration folder → 0001_initial.py created by Django for creating the actual
SQL code to interact the Database (Possible for editing)
In order to see what Django has created in SQL use python manage.py sqlmigrate
office 0001

→ run migrate again to run all new data which aren’t running yet
→ python manage.py migrate

31. Data Interaction: Creating and Inserting

Inserting new data into a SQL table is easy with Django Models

Since the models are represented by a class, we can easily create a new instance of
the class object in Python, and then call the .save() method to create an INSERT call to
the SQL database.

Alternatively, you can use the built-in .objects.create() method to both create and save
the new data entry in a single line.

In instances where you want to create multiple new data entries in bulk, you can use the
.objects.bulk_create() method to pass in a list of newly created objects.

Let’s explore these 3 methods of creating new data entries with a model:

- Create Object and .save()

- objects.create()
- objects.bulk_create()

https://docs.djangoproject.com/en/4.1/ref/models/querysets/#methods-that-do-not-
return-querysets

→ run shell command
→ python manage.py shell

User interface interaction with an operating system by using PYTHON

Creating and saving Instance of the object in two steps:

→ create instance: carl = Patient(first_name='carl', last_name='smith', age=30)
→ save instance in database carl.save()

https://docs.djangoproject.com/en/4.1/ref/models/querysets/#methods-that-do-not-return-querysets
https://docs.djangoproject.com/en/4.1/ref/models/querysets/#methods-that-do-not-return-querysets

→ creating and saving in database at the same time with objects.create()
→ Patient.objects.create

→ 2 Instances/ Patients are now saved in Database
→ create and saved another Patient

→ bulk_create() in order to create many Patient at the same time

https://docs.djangoproject.com/en/4.1/ref/models/querysets/#bulk-create

Hint: there are many caveats!

→ The way how to create many Patients at the same time:

>>> mylist=[Patient(first_name='adam', last_name='smith', age=50),
Patient(first_name='paul', last_name='marx', age=15)]

>>> Patient.objects.bulk_create(mylist)

→ Patient 4 and 5 are created!

32. Data Interaction: Using .all() Reading and Querying

Each Model you create comes with a Manager that allows you to create a QuerySet
which can then be used to retrieve entries from the database

https://docs.djangoproject.com/en/4.1/ref/models/querysets/#bulk-create

Keep in mind that the QuerySet is actually lazily evaluated, meaning that it doesn’t hit
the database until its explicitly asked to grab the information

Recall we used something like:

- MyModel.objects
- This is the Django Model Manager
- This Manager can then actually read the database through the use of method

calls, like .all() and .get() and narrow down results with .filter() and .exclude()

In this lecture we’re going to focus on the .all() method which allows us to grab all the
entries in a database table.

Typically, we won’t want everything, so we’ll need to filter our results, but we’ll discuss
that in more detail later on.

Great resource on queries with examples:

- docs.djangoproject.com/en/4.1/topics/db/queries/

For now, let’s explore the basics of reading in data from the database and what
changes we can make to the model to make results more human readable

→ python manage.py shell

→ from office.models import Patient

→ Patient.objects.all()
→ Patient.objects.all()[0] # showing only first entry

For readable entries add to models.py → def __str__(self): f”{self.last_name},
{self.first_name} is {self.age} years old”

33. Data Interaction: Filtering filter() and get()

The .get() operation allows us to grab a single item from the Model table

This is typically reserved for something where you are sure there is only a single unique
entry, like the default primary key that is automatically created by Django (pk=N).

If we want to further filter our results (rather than grab all or get a single item), we can
use the .filter() method to narrow down based on conditions.

The .filter() method can be chained together.

Django also provides operators for QuerySets, which allow us to directly use logic like
AND and OR.

These operators need to be imported from django.db.models from the Q function

Let’s explore the following topics:

- Using .get()
- Using .filter()
- Using operators

Get() and Filter():

→ Patient.objects.get(pk=1)

Hint: SQL Table begins with 1 (Python list with 0)

Error will occur if item exist more than 1 as the get method can only return a single
object!

→ Patient.objects.filter(last_name=”smith”).all() or
Patient.objects.filter(last_name=”smith”)

→ Double filter: Patient.objects.filter(last_name=”smith”).filter(age=30).all() or
Patient.objects.filter(last_name=”smith”).filter(age=30)

Operators:

→ from django.db.models import Q

→ allow us to use: OR → I and AND → & operators

https://docs.djangoproject.com/en/4.1/topics/db/queries/#complex-lookups-with-q-
objects

→ Patient.objects.filter(Q(last_name=’smith’) & Q(age=40)).all() or
Patient.objects.filter(Q(last_name=’smith’) & Q(age=40))

34. Data Interaction: Filtering with Field lookups

So far we’ve had to use equality statements in our filtering (age=30 or
last_name=’smith’)

https://docs.djangoproject.com/en/4.1/topics/db/queries/#complex-lookups-with-q-objects
https://docs.djangoproject.com/en/4.1/topics/db/queries/#complex-lookups-with-q-objects

But what about more general comparison operators:
- Greater than or less than
- Starts with

For more complex filtering operations we use field lookups with a filter() call:

Model.objects.filter(name__startswith=”s”)

https://docs.djangoproject.com/en/4.1/topics/db/queries/#field-lookups

→ Patient.objects.filter(last_name__startswith='s').all()
→ Patient.objects.filter(age__in=[20,30,40]).all()

→ in = in a given iterable; often a list, tuple, or queryset
→ gte = greater than or equal to → Patient.objects.filter(age_gte=39).all()
→ gt = greater than
→ lt = less than
→ lte = less than or equal to
→ startswith

More: https://docs.djangoproject.com/en/4.1/ref/models/querysets/#field-lookups

Methods that return new QuerySets:

https://docs.djangoproject.com/en/4.1/ref/models/querysets/#exact

→ order_by

order_by(*fields)

By default, results returned by a QuerySet are ordered by the ordering tuple given by
the ordering option in the model’s Meta. You can override this on a per-QuerySet basis
by using the order_by method.

Example:

https://docs.djangoproject.com/en/4.1/topics/db/queries/#field-lookups
https://docs.djangoproject.com/en/4.1/ref/models/querysets/#field-lookups
https://docs.djangoproject.com/en/4.1/ref/models/querysets/#exact

Entry.objects.filter(pub_date__year=2005).order_by('-pub_date', 'headline')

The result above will be ordered by pub_date descending, then by headline ascending.
The negative sign in front of "-pub_date" indicates descending order. Ascending
order is implied. To order randomly, use "?", like so:

→ Entry.objects.order_by('?')

→ Patient.objects.order_by(‘age’).all()

35. Data Interaction: Updating Models

There may come a time when you need to create a new column or attribute for a model

You can easily update existing models by simply adding a new model class attribute
and then migrating those changes

You should note that when adding new fields, the existing entries will need to have
some default value inserted (even if it’s just null)

In fact, when we attempt to run migrations without taking care of these issues, Django
will specifically request us to make a decision

You’ll be given two options:

- Choose a default value on the spot when making the migrations file
- Cancel the migration and create a default value within the model

It’s usually more robust to have the default live in the model, but each case is different

Let’s explore these ideas further in our code, we’ll also touch on the idea of using
validators with fields, which add hard-coded constraints that will rejects non valid
entries.

→ adding new attributes to the table

Hint: it needs a default, since data already exist in the database
→ here the Patient doesn’t have any heart rate value

Django will occur an error:

It is impossible to add a non-nullable field 'heartrate' to patient without specifying a
default. This is because the database needs something to populate existing rows.
Please select a fix:
 1) Provide a one-off default now (will be set on all existing rows with a null value for this
column)
 2) Quit and manually define a default value in models.py.
Select an option:
→ option 2: for transparency reasons it is better to put everything in models.py
→ example heartrate = models.IntegerField(default=60)

from django.db import models

Create your models here.

class Patient(models.Model):

 first_name = models.CharField(max_length=30)

 last_name = models.CharField(max_length=30)

 age = models.IntegerField()

 heartrate = models.IntegerField(default=60)

 def __str__(self):

 return f"{self.last_name}, {self.first_name} is {self.age} years old."

→ python manage.py makemigrations office
→ new python file will create for the changes! → 0002_patient_heartrate

Hint: This file is depended with 0001_initials.py

Validators:

https://docs.djangoproject.com/en/4.1/ref/validators/#built-in-validators

→ from django.core.validators import MaxValueValidator, MinValueValidator
→ …validators=[built_in validators]

https://docs.djangoproject.com/en/4.1/ref/validators/#built-in-validators

from django.db import models

from django.core.validators import MaxValueValidator, MinValueValidator

Create your models here.

class Patient(models.Model):

 first_name = models.CharField(max_length=30)

 last_name = models.CharField(max_length=30)

 age = models.IntegerField(validators=[MinValueValidator(0), MaxValueValidator(120)])

 heartrate = models.IntegerField(default=60, validators=[MinValueValidator(1), MaxValueValidator(300)])

 def __str__(self):

 return f"{self.last_name}, {self.first_name} is {self.age} years old."

→ python manage.py makemigrations office
→ python manage.py migrate

Hint: With python manage.py showmigrations you can see all migrations and
which ones are already migrated and which ones are not

After → python manage.py migrate

36. Data Interaction: Updating Entries

Django makes it very easy to update existing entries

You simply grab the existing data entry, update any attributes, then .save() the changes
to write the update to the database table

Let’s check it out

→ from my_app.models import Object
→ Assign entry to a value with Entry.objects.get(pk=1)
→ Change value with the following attribute → value.last_name=’name’
→ value.save() for saving it at the database

Example:

→ python manage.py shell
→ from office.models import Patient
→ Patient.objects.get(pk=1)
→ carl = Patient.objects.get(pk=1)
→ carl
→ carl.last_name
→ carl.last_name = ‘django’
→ carl
→ carl.save()
→ Patient.objects.all()

37. Data Interaction: Deleting

→ .delete()

38. Connecting Templates and Database Models

You have a lot of the knowledge and tools needed to make a fully functioning website!

You know all the details necessary to connect a user to a backend database and have
the user interact with the data (create, read, update and delete).

In this lecture, we’ll explore how we could report back information from the database to
the user in a template

However, we want to keep in mind there are two major ideas we have yet to learn
about…

Two Major Features:

- Django Forms
o Allows Django to automatically create forms from Python to template

- Class Based Views
o Automatically generates views based on a Model

These two features are so powerful that you should really learn them first before
jumping straight into using Django based on what you know so far

While we have a lot of capabilities already, those features will drastically reduce
your development time!

For now let’s show a simple example of a template that could be used report back
information from a database

Steps:
One:

→ create urls.py file on app level

Two:
On urls.py project level

→ import include and connect urls.py app level with urls.py project level
→ path(‘office’/, include(‘office.urls’))

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('office/', include('office.urls'))

]

Three:
On views.py app level

→ import: from . import models
→ create function for the database list

from django.shortcuts import render

from . import models

Create your views here.

def list_patients(request):

 return 'nothing'

Four:
On urls.py app level

→ import: from django.urls import path
→ from . import views
→ add path from function list_patients and give it a name

from django.urls import path

from . import views

domain.com/office --->

urlpatterns = [

 path('',views.list_patients, name='list_patients')

]

Five:
On views.py app level

→ connect model object to views.py. with models.Patient.objects.all()
→ continue with function and assign object to a variable
→ use dictionary to send a context variable to the HTML → look at 17. Variables in
Templates for more information

from django.shortcuts import render

from . import models

Create your views here.

def list_patients(request):

 all_patients = models.Patient.objects.all()

 context_list = {'patients' : all_patients}

 return render(request, 'office/list.html', context = context_list) # placeholder html doesn’t exist yet

Six:
Create templates folder in app folder and html file to templates/office

→ templates

o Office
▪ list.html

Seven:
Add content in html file

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

<body>

 {{patients}}

</body>

</html>)

Eight:
→ runserver
→ http://127.0.0.1:8000/office/

Output:

In a list:

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

http://127.0.0.1:8000/office/

<body>

 {% for person in patients %}

 {{person}}

 {% endfor %}

</body>

</html>

Output:

Only last_name:

 {{person.last_name}}

Section 12: Django – Admin

39. Introduction to Django Admin Section

One of the most powerful features of Django is its ability to automatically create an
Admin interface.

This is a feature meant to be used by the website manager, to have a graphical
interface for interacting with data and users on the site.

We’ve already seen pre-built admin paths in our urls.py file (“/admin”) as well as
indications of an existing Django Admin app (“django.contrib.admin”).

In this section we’ll explore how to access the admin panel view and how to configure
admin settings.

Keep in mind that the admin panel is really meant for a manager of the website, we
won’t expect normal users to access the Django Administration interface.

Section Overview:

- Review of Website with Models
- Accessing Django Admin Panel
- Connecting Models to Admin

40. Model and Website – Part one

Let’s create an online website that sells cars!

We’ll need to create a very simple landing page that can report what cars we have in
stock, and we’ll also want a way to add or remove cars from our inventory.

Everything shown in this lecture should feel like a review of past concept, we won’t
introduce the admin panel yet!

To do:

- Create Templates
- Create Views
- Connect with URLs
- Create Model for Cars
- Test CRUD functionality

→ Create new Project my_car_site
→ Create new app cars
→ Create Templates (project level and app level)
→ Create HTMLs files and base.html in templates project level
→ Create Views (Function based View, render html files)

from django.shortcuts import render

Create your views here.

def list_view(request):

 return render(request, 'cars/list.html')

def add_view(request):

 return render(request, 'cars/add.html')

def delete_view(request):

 return render(request, 'cars/delete.html')

→ Connect with URLs (create urls.py file on app level, add app_name to urls.py app
level)

App level:

from django.urls import path

from . import views

app_name = 'cars'

urlpatterns = [

 path('list/', views.list_view, name = 'list'),

 path('add/', views.add_view, name = 'add'),

 path('delete/', views.delete_view, name = 'delete')

]

Project level:

"""my_car_site URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:

 https://docs.djangoproject.com/en/4.1/topics/http/urls/

Examples:

Function views

 1. Add an import: from my_app import views

 2. Add a URL to urlpatterns: path('', views.home, name='home')

Class-based views

 1. Add an import: from other_app.views import Home

 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')

Including another URLconf

 1. Import the include() function: from django.urls import include, path

 2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))

"""

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('cars/', include('cars.urls'))

]

→ Set settings:

- import os and set templates path in settings.py
- add path for new installed app

from pathlib import Path

import os

INSTALLED_APPS = [

 'cars.apps.CarsConfig',

 'django.contrib.admin',

 'django.contrib.auth',

 'django.contrib.contenttypes',

 'django.contrib.sessions',

 'django.contrib.messages',

 'django.contrib.staticfiles',

]

TEMPLATES = [

 {

 'BACKEND': 'django.template.backends.django.DjangoTemplates',

 'DIRS': [os.path.join(BASE_DIR,'templates')],

 'APP_DIRS': True,

 'OPTIONS': {

 'context_processors': [

 'django.template.context_processors.debug',

 'django.template.context_processors.request',

 'django.contrib.auth.context_processors.auth',

 'django.contrib.messages.context_processors.messages',

],

 },

 },

]

→ Run Migration
→ python manage.py migration

→ Set up base.html and link it to the app level html (Set up bootstrap Navigation bar)

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- CSS only -->

 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet"

integrity="sha384-Zenh87qX5JnK2Jl0vWa8Ck2rdkQ2Bzep5IDxbcnCeuOxjzrPF/et3URy9Bv1WTRi"

crossorigin="anonymous">

 <!-- JavaScript Bundle with Popper -->

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js" integrity="sha384-

OERcA2EqjJCMA+/3y+gxIOqMEjwtxJY7qPCqsdltbNJuaOe923+mo//f6V8Qbsw3"

crossorigin="anonymous"></script>

 <title>Cars Project</title>

</head>

<body>

 <nav class="navbar navbar-dark bg-dark">

 <div class="container-fluid">

 <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbarNav" aria-

controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">

 </button>

 <div class="collapse navbar-collapse" id="navbarNav">

 <ul class="navbar-nav">

 <li class="nav-item">

 List

 <li class="nav-item">

 Add

 <li class="nav-item">

 Delete

 </div>

 </div>

 </nav>

 {# Block content #}

 {% block content %}

 {% endblock %}

</body>

</html>

→ Add {% extends ‘base.html’ %} to the other .html files

Example: add.html

{% extends 'base.html' %}

{% block content %}

<h1>ADD.HTML</h1>

{% endblock %}

Output:

41. Model and Website: Part Two

So far, we’ve completed:

- Basic Views
- Basic URL Routing
- General NavBar
- Empty Templates:

o List
o Add
o Delete

Now we will:

- Create a Car Model.
- Add Functionality to Views connecting to model.
- Create HTML forms to send information back to the Views.

Important Note!

The methods shown here using “raw” HTML forms to accept user information regarding
a model in the database are not ideal and later on we will learn about the Django Form
system which is much better!

→ Create Car Model (models.py)

from django.db import models

Create your models here.

class Car(models.Model):

 # pk

 brand = models.CharField(max_length = 30)

 year = models.IntegerField()

 def __str__(self):

 return f"Car is {self.brand} {self.year}"

→ Make migration
→ python manage.py makemigrations cars

Hint: Also, possibly make migration and run migrate just once after creating
models

→ Run migration
→ python manage.py migration

→ Add model in views.py

from django.shortcuts import render

from . import models

Create your views here.

def list_view(request):

 all_cars = models.Car.objects.all()

 context = {'all_cars':all_cars}

 return render(request, 'cars/list.html', context = context)

def add_view(request):

 return render(request, 'cars/add.html')

def delete_view(request):

 return render(request, 'cars/delete.html')

→ update list.html

{% extends 'base.html' %}

{% block content %}

<div class='container'>

 <h1>LIST.HTML</h1>

 {% for car in all_cars %}

 {{cars}}

 {% endfor %}

</div>

{% endblock %}

→ update add.html and use a form

{% extends 'base.html' %}

{% block content %}

<div class='container'>

 <h1>ADD.HTML</h1>

 <h2>Add a new car to the database:</h2>

 <form action="" method="POST">

 <div>

 <label for="brand">Brand:</label>

 <input type="text" id="brand" name="brand">

 </div>

 <div>

 <label for="year">Year</label>

 <input type="text" id="year" name="year">

 </div>

 <input type="submit">

 </form>

{% endblock %}

→ Use {% csrf_token %} because Django thinks that is an attacking attack:
See error:

Important add CSRF token:

In the template, there is a {% csrf_token %} template tag inside each POST

form that targets an internal URL.

Some style changes on form:

{% extends 'base.html' %}

{% block content %}

<div class='container'>

 <h1>ADD.HTML</h1>

 <h2>Add a new car to the database:</h2>

 <form action="" method="POST">

 {% csrf_token %} {# csrf_token to have the submit permission #}

 <div class="form-group">

 <label for="brand">Brand:</label>

 <input class="form-control" type="text" id="brand" name="brand">

 </div>

 <div class="form-group">

 <label for="year">Year</label>

 <input class="form-control" type="text" id="year" name="year">

 </div>

 <input class="btn btn-primary" type="submit">

 </form>

{% endblock %}

→ on views.py add request.POST to add_view() function

def add_view(request):

 print(request.POST)

 return render(request, 'cars/add.html')

Output by submit the form:

→ if statement for creating objects:
→ import redirect and reverse in views.py

from django.shortcuts import render, redirect

from django.urls import reverse

from . import models

Create your views here.

def list_view(request):

 all_cars = models.Car.objects.all()

 context = {'all_cars':all_cars}

 return render(request, 'cars/list.html', context = context)

def add_view(request):

 if request.POST: # if there is a request post

 brand = request.POST['brand'] # I grab the brand

 year = int(request.POST['year']) # I grab the year (no exception here)

 models.Car.objects.create(brand = brand, year = year) # I grab and save that objects in the database

 # if user submitted new car ---> List.html

 return redirect(reverse('cars:list'))

 else:

 return render(request, 'cars/add.html')

def delete_view(request):

 return render(request, 'cars/delete.html')

Output:

→ update delete.html
→ what is the primary that I wanna delete?

def delete_view(request):

 if request.POST:

 pk = request.POST['pk']

 try:

 models.Car.objects.get(pk=pk).delete()

 return redirect(reverse('cars:list'))

 except:

 print('pk not found')

 return redirect(reverse('cars:list'))

 else:

 return render(request, 'cars/delete.html')

→ delete some entries by enter the pk
Output:

42. Django Administration

Let’s explore the Django Admin:
- domain.com/admin Extension
- Creating a “superuser”

Whole Django admin system just comes and automatically built itself based off the
models and views you create

It’s an amazing feature that it going to impress you when you realize you didn’t have to
do any extra code in order to have this happen!

→ domain.com/admin Extension
http://127.0.0.1:8000/admin

→ Creating a superuser

http://127.0.0.1:8000/admin

→ python manage.py createsuperuser
→ enter username, email and password (it is invisible)

43. Django Admin and Models

Let’s explore how to register our models to the Django Admin interface

We’ll also explore the ModelAdmin class which gives us additional functionality with the
field presented in the Admin Interface

https://docs.djangoproject.com/en/4.1/ref/contrib/admin/
→ add Car model to admin site

On admin.py

admin.site.register(Object)

from django.contrib import admin

from cars.models import Car

Register your models here.

admin.site.register(Car)

→ Cars is added

https://docs.djangoproject.com/en/4.1/ref/contrib/admin/

→ with ModelAdmin objects, the admin site can be changed:

ModelAdmin.fields:

from django.contrib import admin

from cars.models import Car

Register your models here.

class CarAdmin(admin.ModelAdmin):

 fields = ['year', 'brand']

admin.site.register(Car, CarAdmin)

→ year and brand are different order!

→ ModelAdmin.fieldsets:

from django.contrib import admin

from cars.models import Car

Register your models here.

class CarAdmin(admin.ModelAdmin):

 fieldsets = (

 ('TIME INFORMATION', {'fields': ['year']}),

 ('CAR INFORMATION', {'fields': ['brand']})

)

admin.site.register(Car, CarAdmin)

Output:

For more visit the Django documentation webpage

Section 13: Django Forms

44. Introduction to Django Forms Section

We've been able to use HTML forms to allow client users send information in their
browser to the backend of our Django application.

The Django website can then Create/Read/Update/Delete information in the database
based on the HTML forms.

User interactions based on HTML forms are extremely common across the internet.

However, HTML forms require a lot of processing to connect with Django, especially
when we want to later connect these inputs to Models.

Fortunately, Django comes with a built-in Forms class which can be used with Django
and Python to create forms and then send that form to the template through a simple
Tag call {{form}}.

This allows us to rapidly develop forms for the client while only needing to work mainly
with Django and Python!

This will be a huge productivity improvement and make our overall website code more
readable.

Django Form Section Overview:

- GET, POST, and CSRF Review
- Django Form Class Basics
- Form Fields and Validation
- Form Widgets and CSS Styling
- ModelForms

45. GET, POST, and CSRF Overview

We've already seen that HTTP (Hypertext Transfer Protocol) is the foundation for the
method of sending and receiving data over the world wide web.

Recall, HTTPS is simply an encrypted version of HTTP.

HTTP defines a variety of methods for interactions.

The key methods we need to understand are GET and POST methods, which we've
already seen used in HTML forms.

GET

- Requests data from a specified resource.
POST

- Requests to send data to a server to create/update a resource.

Note the tricky terminology that can be confusing, both GET and POST are HTTP
request methods, even though you will commonly see GET as "requesting" information
and POST as "sending" information, they are technically HTTP Requests.

Notice how the GET request is sent in the

URL. This means a few things:
- GET request can be bookmarked
- GET request saved in history
- GET request can be cached
- GET request has length limits

Also GET request can only request data, not modify or update anything

What if we want to send information for the specific purpose of updating some backend
information?

We would not want that information in the URL and our main concern is no receiving
information back, but instead sending information.

We see that HTML forms are actually quite readable by the browser, how can we make
sure the HTML form on the page is being correctly used by the appropriate user?

Could a malicious actor try to fake an HTML form?
Imagine this forgery attempt...

How to prevent this attack?

- We could generate a random cryptographic token with every form during each
session.

- The server could then confirm if the token matches with the current session.

How to prevent this attack?

- Since each session has a unique token, only the true original form would be
accepted as authentic.

Imagine a hacker would like to hack a bank account and sending money
→ With time session Token can only be valid for certain period of time
→ The hacker will not be able to post a request for sending money because the token is
no longer valid
→ See pictures below:

Django creates these CSRF tokens for us automatically with a simple tag call!

We simply remember to provide:

• {% csrf_token %}

For more information visit:

https://docs.djangoproject.com/en/4.1/ref/csrf/

46. Django Form Class Basics

Let's create a new Django project and Django app and then we can use Django Forms
instead of a manually created HTML form!

Let's quickly cover the steps we will perform in this lecture to create a car rental review
feedback form...

Steps:

- Create New Project and App
- Connect Templates, Views, and URLs
- Create a forms.py file
- Create a Django Form Class inside forms.py
- Connect Django Form to View for context insertion inside Template

Visit the documentation about forms! Very good!

https://docs.djangoproject.com/en/4.1/topics/forms/

Using form.py

Steps: Start new project!

→ Create Templates
→ Create Views
→ Connect with URLs
→ Set Settings (Install App)
→ Add Content
 → HTMLs
→ Runserver for checking
→ Create Form

Hint: 2 things to worry in HTML files:

- method=”POST”
- input type=”submit”

<body>

 <h1>Rental Review Form</h1>

https://docs.djangoproject.com/en/4.1/ref/csrf/
https://docs.djangoproject.com/en/4.1/topics/forms/

 <form action="" method='POST'>

 <input type="submit">

 </form>

</body>

- Create forms.py file in app level (follow same principle like models.py)

- Create class ExampleForm(forms.Form) → For every HTML label input paring

you want, you create an attribute inside this class

- Use field to replace label and inputs! More on fields →
https://docs.djangoproject.com/en/4.1/topics/forms/#more-on-fields Look at the
built-in field in the documentation

from django import forms

class ReviewForm(forms.Form):

 first_name = forms.CharField(label = 'First Name', max_length=100)

 last_name = forms.CharField(label= 'Last Name', max_length=100)

 email = forms.CharField(label = 'Email')

 review = forms.CharField(label= 'Please write your review here')

- Passing to views.py

from django.shortcuts import render, redirect

from django.urls import reverse

from cars.forms import ReviewForm

Create your views here.

def rental_review(request):

 #POST REQUEST --> Form Contest --> Thank You!

 if request.method == 'POST':

 form = ReviewForm(request.POST)

https://docs.djangoproject.com/en/4.1/topics/forms/#more-on-fields

 if form.is_valid():

 #{'first_name': 'Jose',}

 print(form.cleaned_data)

 return redirect(reverse('cars:thank_you'))

 #Else, Render Form

 else:

 form = ReviewForm()

 return render(request, 'cars/rental_review.html', context={'form':form})

def thank_you(request):

 return render(request, 'cars/thank_you.html')

Explanation:

After we create the form class, we go ahead and import into our view. The actual form is
imported (ReviewForm).
Then you check, Hey are they actually posting something? (if request.method
==’POST’)
If so, pass that information into the review form and if it’s valid (if form.is_valid(), then I
do whatever I want for the information by accessing it through what’s essentially a
Python dictionary (form.cleaned_data). And then I am going to redirect them (return
redirect(reverse…)) So we will actually see the information inside our terminal.

Otherwise, (Else:…) it’s the first time visited page to have a hit, then go ahead and just
create the form and then pass it in here as context of the page. Which then means if
you come back here to run the review.html, that is being passed in here into the {{form}}

Create HTML:

{% csrf_token %}

 {{form}}

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Document</title>

</head>

<body>

 <h1>Rental Review Form</h1>

 <form action="" method='POST'>

 {% csrf_token %}

 {{form}}

 <input type="submit">

 </form>

</body>

</html>

With print(form.cleaned_data)

This data can be import or inject straight to the database

47. Django Forms – Templates Rendering

When passing {{form}} to the template, we saw that the HTML tags rendered by the
Django Form Widgets are all in the same line and don't look visually appealing.

Let's explore a few more details around template rendering inside the .html files.

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- CSS only -->

 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet"

integrity="sha384-Zenh87qX5JnK2Jl0vWa8Ck2rdkQ2Bzep5IDxbcnCeuOxjzrPF/et3URy9Bv1WTRi"

crossorigin="anonymous">

 <!-- JavaScript Bundle with Popper -->

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js" integrity="sha384-

OERcA2EqjJCMA+/3y+gxIOqMEjwtxJY7qPCqsdltbNJuaOe923+mo//f6V8Qbsw3"

crossorigin="anonymous"></script>

 <title>Document</title>

</head>

<body>

 <h1>Rental Review Form</h1>

 <form action="" method='POST'>

 {% csrf_token %}

 <div class="container">

 {% for field in form %}

 <div class="form-control">

 {{field.label_tag}}

 </div>

 {{field}}

 {% endfor %}

 <input type="submit">

 </div>

 </form>

</body>

</html>

Output:

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- CSS only -->

 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet"

integrity="sha384-Zenh87qX5JnK2Jl0vWa8Ck2rdkQ2Bzep5IDxbcnCeuOxjzrPF/et3URy9Bv1WTRi"

crossorigin="anonymous">

 <!-- JavaScript Bundle with Popper -->

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js" integrity="sha384-

OERcA2EqjJCMA+/3y+gxIOqMEjwtxJY7qPCqsdltbNJuaOe923+mo//f6V8Qbsw3"

crossorigin="anonymous"></script>

 <title>Document</title>

</head>

<body>

 <h1>Rental Review Form</h1>

 <form action="" method='POST'>

 {% csrf_token %}

 <div class="container">

 {% for field in form %}

 <div class="form-control">

 {{form}}

 </div>

 {% endfor %}

 <input type="submit">

 </div>

 </form>

</body>

</html>

Output:

→ Use mb-3:

<body>

 <h1>Rental Review Form</h1>

 <div class="container">

 <form action="" method='POST'>

 {% csrf_token %}

 {% for field in form %}

 <div class="mb-3">

 {{field.label_tag}}

 </div>

 {{field}}

 {% endfor %}

 <input type="submit">

 </form>

 </div>

</body>

Output:

Manually:

Two significally commands for forms:

Widget: form.first_name
Label: form.first_name.label_tag (for the particular field)

Easy way:

{{form.as_p}} to let Django add <p> </p> tags to each field

48. Django Forms – Widget and Styling

Recall that a Form Field inside forms.py ends up generating a Django widget which in
turn renders the actual HTML form input/label tags.

To have more control over styling and presentation, we can access widget attributes.

We'll begin by linking a static files directory to hold our custom CSS files:

- Create app/static/app/custom.css file
- Load static directory in .html
- Link static CSS file connection

- Run migrate to load new app in settings.py file

Simple style class: custom.css

.myform {

 border: 5px dashed red;

}

→ Load static directory in .html
→ Link static CSS file connection

→ {% load static %)
→ <link rel="stylesheet" href="{% static 'cars/custom.css %}">

{% load static %}

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <!-- CSS only -->

 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/css/bootstrap.min.css" rel="stylesheet"

integrity="sha384-Zenh87qX5JnK2Jl0vWa8Ck2rdkQ2Bzep5IDxbcnCeuOxjzrPF/et3URy9Bv1WTRi"

crossorigin="anonymous">

 <!-- JavaScript Bundle with Popper -->

 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.2/dist/js/bootstrap.bundle.min.js" integrity="sha384-

OERcA2EqjJCMA+/3y+gxIOqMEjwtxJY7qPCqsdltbNJuaOe923+mo//f6V8Qbsw3"

crossorigin="anonymous"></script>

 <link rel="stylesheet" href="{% static 'cars/custom.css' %}">

 <title>Document</title>

</head>

→ pass in style class in body

→ <div class=”container myform”>

<body>

 <h1>Rental Review Form</h1>

 <div class="container myform">

 <form action="" method='POST'>

 {% csrf_token %}

 {% for field in form %}

 <div class="mb-3">

 {{field.label_tag}}

 </div>

 {{field}}

 {% endfor %}

 <input type="submit">

 </form>

 </div>

</body>

</html>

→ Run migrate to load new app in settings.py file

Visit: https://docs.djangoproject.com/en/4.1/ref/forms/fields/#module-django.forms.fields

→ Add textarea() built-in widget

from django import forms

class ReviewForm(forms.Form):

 first_name = forms.CharField(label = 'First Name:', max_length=100)

https://docs.djangoproject.com/en/4.1/ref/forms/fields/#module-django.forms.fields

 last_name = forms.CharField(label= 'Last Name:', max_length=100)

 email = forms.CharField(label = 'Email:')

 review = forms.CharField(label= 'Please write your review here:',

 widget=forms.Textarea())

Output:

→ Styling Textarea:

→ have red dashes only on text area

→ add attrs in forms.py

from django import forms

class ReviewForm(forms.Form):

 first_name = forms.CharField(label = 'First Name:', max_length=100)

 last_name = forms.CharField(label= 'Last Name:', max_length=100)

 email = forms.CharField(label = 'Email:')

 review = forms.CharField(label= 'Please write your review here:',

 widget=forms.Textarea(attrs={'class':'myform'}))

→ delete myforms in html

<body>

 <h1>Rental Review Form</h1>

 <div class="container"> → no more myform

 <form action="" method='POST'>

 {% csrf_token %}

 {% for field in form %}

 <div class="mb-3">

 {{field.label_tag}}

 </div>

 {{field}}

 {% endfor %}

 <input type="submit">

 </form>

 </div>

</body>

Output:

→ what for attributes exist for textarea (GOOGLE)
→ new attributes:

from django import forms

class ReviewForm(forms.Form):

 first_name = forms.CharField(label = 'First Name:', max_length=100)

 last_name = forms.CharField(label= 'Last Name:', max_length=100)

 email = forms.CharField(label = 'Email:')

 review = forms.CharField(label= 'Please write your review here:',

 widget=forms.Textarea(attrs={'class':'myform', 'rows':'2','cols':'2'}))

Output:

https://www.w3schools.com/tags/tag_textarea.asp

https://www.w3schools.com/tags/tag_textarea.asp

49. Django – ModelForm Class

Often, we use forms to directly interact with a model, such as creating a new instance of
a data point inside a model.

Fortunately, Django provides the ModelForm class which automatically creates a Form
with fields connected to each model field.

→ create Model

from django.db import models

Create your models here.

class Review(models.Model):

 first_name = models.CharField(max_length=30)

 last_name = models.CharField(max_length=30)

 stars = models.IntegerField()

→ add model to admin

from django.contrib import admin

from cars.models import Review

Register your models here.

admin.site.register(Review)

→ make migration: python manage.py makemigrations cars

→ run migrate: python manage.py migrate

→ create superuser (admin): python manage.py create superuser

→ create object via admin:

Creating forms from Models via ModelForm:

https://docs.djangoproject.com/en/4.1/topics/forms/modelforms/

→ change forms and add ModelForm

from django import forms

from cars.models import Review # NEW

from django.forms import ModelForm #NEW

class ReviewForm(forms.Form):

https://docs.djangoproject.com/en/4.1/topics/forms/modelforms/

first_name = forms.CharField(label = 'First Name:', max_length=100)

last_name = forms.CharField(label= 'Last Name:', max_length=100)

email = forms.CharField(label = 'Email:')

review = forms.CharField(label= 'Please write your review here:',

widget=forms.Textarea(attrs={'class':'myform', 'rows':'2','cols':'2'}))

class ReviewForm(ModelForm): # Creating forms from Models # NEW

 class Meta:

 model = Review

 fields = ['first_name', 'last_name', 'stars']

Output:

→ add form.save() to save data in database
→ This single line, because it is a model form, is going to automatically save what the
user passed in as a new instance of the model

from django.shortcuts import render, redirect

from django.urls import reverse

from cars.forms import ReviewForm

Create your views here.

def rental_review(request):

 #POST REQUEST --> Form Contest --> Thank You!

 if request.method == 'POST':

 form = ReviewForm(request.POST)

 if form.is_valid():

 form.save() # This single line, because it is a model form,

 # is going to automatically save what the user passed in

 # as a new instance of the model

 print(form.cleaned_data)

 return redirect(reverse('cars:thank_you'))

 #Else, Render Form

 else:

 form = ReviewForm()

 return render(request, 'cars/rental_review.html', context={'form':form})

def thank_you(request):

 return render(request, 'cars/thank_you.html')

→ passed in
Björn Fromme 1:

→ Check on admin site:

50. Django – ModelForms Customization

→ Define field attributes: “__all__” → same as inserting all attributes

from django import forms

from cars.models import Review

from django.forms import ModelForm

class ReviewForm(forms.Form):

first_name = forms.CharField(label = 'First Name:', max_length=100)

last_name = forms.CharField(label= 'Last Name:', max_length=100)

email = forms.CharField(label = 'Email:')

review = forms.CharField(label= 'Please write your review here:',

widget=forms.Textarea(attrs={'class':'myform', 'rows':'2','cols':'2'}))

class ReviewForm(ModelForm): # Creating forms from Models

 class Meta:

 model = Review

 fields = "__all__" # The same as inserting all attributes

→ change Labels

class ReviewForm(ModelForm): # Creating forms from Models

 class Meta:

 model = Review

 fields = "__all__" # The same as inserting all attributes

 labels = {

 'first_name':"YOUR FIRST NAME",

 'last_name':'Last Name',

 'stars':'Rating'

 }

Output:

→ Using validators in models.py

from django.db import models

from django.core.validators import MinValueValidator, MaxValueValidator

Create your models here.

class Review(models.Model):

 first_name = models.CharField(max_length=30)

 last_name = models.CharField(max_length=30)

 stars = models.IntegerField(validators = [MinValueValidator(1), MaxValueValidator(5)])

→ makemigrations and run migrate again

→ run server again

→ Submitting doesn’t work!!

→ add {{field.erros}} in html

<body>

 <h1>Rental Review Form</h1>

 <div class="container">

 <form action="" method='POST'>

 {% csrf_token %}

 {% for field in form %}

 <div class="mb-3">

 {{field.label_tag}}

 </div>

 {{field}}

 {{field.errors}}

 {% endfor %}

 <input type="submit">

 </form>

 </div>

</body>

→ Django is checking through the validation if input is valid and provide a
message if input is not valid!

Output:

→ go to built-in field classes and look under these classes for error messages keys

https://docs.djangoproject.com/en/4.1/ref/forms/fields/#built-in-field-classes

→ add error_messages → min_value, max_value

class ReviewForm(ModelForm): # Creating forms from Models

 class Meta:

 model = Review

 fields = "__all__" # The same as inserting all attributes

 labels = {

 'first_name':"YOUR FIRST NAME",

 'last_name':'Last Name',

 'stars':'Rating'

 }

 error_messages = {

 'stars': {

 "min_value":"YO! Min value is 1",

 "max_value":"YO! YO! Max value is 5"

 }

 }

Output:

https://docs.djangoproject.com/en/4.1/ref/forms/fields/#built-in-field-classes

Section 14: Django Class Based Views

51. Introduction to Class Based Views

So far we've only seen functions inside our views.py file, but just like Forms and Models,
Django provides an entire View class system that is very powerful for quickly rendering
commonly used views.

Let's see Django developer's own reasoning from the documentation on why to use
class based views...

Documentation on Class Based Views:

- Writing web applications can be monotonous, because we repeat certain
patterns again and again. Django tries to take away some of that monotony at
the model and template layers, but web developers also experience this boredom
at the view level

- Django's generic views were developed to ease that pain. They take certain
common idioms and patterns found in view development and abstract them so
that you can quickly write common views of data without having to write too much
code.

- Django CBVs (Class Based Views) come with many pre-built generic class views
for common tasks, such as listing all the values for a particular model in a
database (ListView) or creating a new instance of a model object (CreateView).

- Once we cover the basics of Class Based Views, we'll go through a "tour" of the
key generic class based views and cover the few specifics that are important to
know when using them.

- Note! They should be relatively easy to use and understand on their own!

Section Overview:

- Class Based Views Basics
- Generic Views
- TemplateView
- ListView
- DetailView
- CreateView
- DeleteView

52. Django CBV – TemplateView

→ Create Templates folder and html files

Create TemplateView class on views.py

→ from django.views.generic import TemplateView
→ create class for TemplaeView

from django.shortcuts import render

from django.views.generic import TemplateView

Create your views here.

class HomeView(TemplateView):

 template_name = 'classroom/home.html'

class ThankYouView(TemplateView):

 template_name = 'classroom/thank_you.html'

Connect TemplateView class to urls.py

→ from school.views import HomeView
→ app_name = ‘school’

→ add instead a function the method HomeView.as_view()

from django.urls import path

from classroom.views import HomeView, ThankYouView

app_name = 'classroom'

urlpatterns = [

 path('', HomeView.as_view(), name='home'), # path expects a function

 path('thank_you/', ThankYouView.as_view(), name='thank_you')

]

→ Connect with urls.py project level

"""school URL Configuration

The `urlpatterns` list routes URLs to views. For more information please see:

 https://docs.djangoproject.com/en/4.1/topics/http/urls/

Examples:

Function views

 1. Add an import: from my_app import views

 2. Add a URL to urlpatterns: path('', views.home, name='home')

Class-based views

 1. Add an import: from other_app.views import Home

 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')

Including another URLconf

 1. Import the include() function: from django.urls import include, path

 2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))

"""

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

 path('admin/', admin.site.urls),

 path('classroom/', include('classroom.urls'))

]

→ set app at settings.py
→ ‘classroom.apps.ClassroomConfig’
→ Check if templates are working
→ run server

→ Create a link on home.html which takes you to thank_you.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Home</title>

</head>

<body>

 <h1>Welcome to the Classroom</h1>

 Take me to the Classroom

</body>

</html>

53. Django CBV – FormView

→ Create forms.py on app level
(as usual)

from django import forms

from django.forms import Textarea

class ContactForm(forms.Form):

 name = forms.CharField()

 message = forms.CharField(widget=Textarea)

→ create Template form html

<h1>Contact Form</h1>

<form method="Post">

 {% csrf_token %}

 {{form.as_p}}

 <input type = "submit" value = "Submit">

</form>

→ Create FormView on views.py

from django.shortcuts import render

from django.views.generic import TemplateView, FormView

from classroom.forms import ContactForm

Create your views here.

class HomeView(TemplateView):

 template_name = "classroom/home.html"

class ThankYouView(TemplateView):

 template_name = "classroom/thank_you.html"

class ContactFormView(FormView):

 form_class = ContactForm

 template_name = "classroom/contact.html"

 # success URL? It is the actual URL NOT a template.html

 success_url = "/classroom/thank_you/"

 # what to do with form

 def form_valid(self, form):

 print(form.cleaned_data) # it is a dict[key]// form.save() is also possible

 return super().form_valid(form) # similar to ContactForm(request.Post)

#What to do with form
→ Ok the form is valid! What do you do with it?
→ Then Use this method call super().form_valid(form) → Inherited from FormView → to
essentially take care of things

→ Connect to urls.py
→ import ContactFormView

from django.urls import path

from classroom.views import HomeView, ThankYouView, ContactFormView

app_name = 'classroom'

urlpatterns = [

 path('', HomeView.as_view(), name='home'), # path expects a function

 path('thank_you/', ThankYouView.as_view(), name='thank_you'),

 path('contact/', ContactFormView.as_view(), name='contact')

]

→ Create a link on home.html which takes you to contact.html

→ check and run server

Using reverse_lazy instead to remember URL path! Same like reverse()

from django.shortcuts import render

from django.urls import reverse_lazy

from django.views.generic import TemplateView, FormView

from classroom.forms import ContactForm

success URL? It is the actual URL NOT a template.html

 # success_url = "/classroom/thank_you/"

 success_url = reverse_lazy('classroom:thank_you')

Difference between reverse() and reverse_lazy()

https://www.folkstalk.com/tech/where-to-import-reverse-lazy-in-django-with-code-
examples/

https://www.folkstalk.com/tech/where-to-import-reverse-lazy-in-django-with-code-examples/
https://www.folkstalk.com/tech/where-to-import-reverse-lazy-in-django-with-code-examples/

54. Django CBV – CreateView

The next few lectures are going to highlight one of the best features of Class
Based Views - Model based CBVS.

There are a few operations that are very common with models: Create, Detail, Update,
Delete, List.

Django provides CBVs that automatically create the appropriate views, forms, and
context objects for predefined template names by simply being connected to a model.

These classes require just a few attributes and automatically do the work for you!

Important Note!

- Because the classes are designed to be simple, these views require a template
name to follow a specific pattern, for example:

o model_form.html
▪ teacher_form.html

- This factor is often confusing to students because it seems like Django
"magically" knew a template .html file existed, but it's just looking for a specific
naming convention pattern.

→ create a Model

from django.db import models

Create your models here.

class Teacher(models.Model):

 first_name = models.CharField(max_length=30)

 last_name = models.CharField(max_length=30)

 subject = models.CharField(max_length=30)

 def __str__(self):

 return f'{self.first_name} {self.last_name} teaches {self.subject}'

On views.py

→ import class CreateView
→ from django.views.generic import CreateView

→ import model
→ from classroom.models import Teacher

from django.shortcuts import render

from django.urls import reverse_lazy

from django.views.generic import TemplateView, FormView, CreateView

from classroom.models import Teacher

from classroom.forms import ContactForm

Create your views here.

class HomeView(TemplateView):

 template_name = "classroom/home.html"

class ThankYouView(TemplateView):

 template_name = "classroom/thank_you.html"

class TeacherCreateView(CreateView):

 model = Teacher

 # model_form.html

 # .save()

 fields = "__all__"

 success_url = reverse_lazy('classroom:thank_you')

class ContactFormView(FormView):

 form_class = ContactForm

 template_name = "classroom/contact.html"

 # success URL? It is the actual URL NOT a template.html

 # success_url = "/classroom/thank_you/"

 success_url = reverse_lazy('classroom:thank_you')

 # what to do with form

 def form_valid(self, form):

 print(form.cleaned_data)

 return super().form_valid(form) # similar to ContactForm(request.Post)

Students often ask is how does it actually know what template to connect to notice?

→ Create teacher_form.html

<h1> TEACHER FORM </h1>

<form method='POST'>

 {% csrf_token %}

 {{form.as_p}}

 <input type="submit" value="Submit">

</form>

TeacherCreateView looks up at the particular Templates with model_form.html through
the help of CreateView and model = Teacher

In this case it looks up at teacher_form.html and it will auto create a model form for you,
an then we’ll set that up

→ another cool thing is the second you hit the submit button, its pretty much
automatically going to hit save after all, the fields are validated
→ so it’s doing a lot of work for you

CAVEATE → It is only creating a new instance in that model

→ connect to html for taking you to the create_teacher page

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Home</title>

</head>

<body>

 <h1>Welcome to the Classroom</h1>

 Take me to the Classroom

 Take me to the Contact Form

 Create New Teacher Page

</body>

</html>

→ connect to url

from django.urls import path

from classroom.views import HomeView, ThankYouView, ContactFormView, TeacherCreateView

app_name = 'classroom'

urlpatterns = [

 path('', HomeView.as_view(), name='home'), # path expects a function

 path('thank_you/', ThankYouView.as_view(), name='thank_you'),

 path('contact/', ContactFormView.as_view(), name='contact'),

 path('teacher/', TeacherCreateView.as_view(), name= 'create_teacher')

]

→ don’t forget makemigration and then migrate it again

OUTPUT → IT CREATE NEW INSTANCE FOR TEACHER!

Created Gianluca Cannone Django
 Mattia Virgilio Musik

But how you can see it? Look at the next lecture

55. Django CBV – ListView

Create a new view that can list all the instances and any particular model

→ import ListView
→ create TeacherListView class and inherit from ListView

→ same as TeacherCreateView →

from django.shortcuts import render

from django.urls import reverse_lazy

from django.views.generic import TemplateView, FormView, CreateView, ListView

from classroom.models import Teacher

from classroom.forms import ContactForm

Create your views here.

class HomeView(TemplateView):

 template_name = "classroom/home.html"

class ThankYouView(TemplateView):

 template_name = "classroom/thank_you.html"

class TeacherCreateView(CreateView):

 model = Teacher

 # model_form.html

 # .save()

 fields = "__all__"

 success_url = reverse_lazy('classroom:thank_you')

class ContactFormView(FormView):

 form_class = ContactForm

 template_name = "classroom/contact.html"

 # success URL? It is the actual URL NOT a template.html

 # success_url = "/classroom/thank_you/"

 success_url = reverse_lazy('classroom:thank_you')

 # what to do with form

 def form_valid(self, form):

 print(form.cleaned_data)

 return super().form_valid(form) # similar to ContactForm(request.Post)

class TeacherListView(ListView):

 # model_list.html

 model = Teacher

 # context_object_name = 'teacher_list'

→ Create template list
→ teacher_list.html because ListView class is looking to model_list.html

<h1>List of Teachers (ListView)</h1>

 {% for teacher in object_list %}

 {{teacher.first_name}} {{teacher.last_name}}

 {% endfor %}

What is object_list??

You can change the name of the list: context_object_name = “teacher_list”

RECOMMENDATION : if you get more views then you should change it for readability

class TeacherListView(ListView):

 # model_list.html

 model = Teacher

 # context_object_name = 'teacher_list'

→ Connect to urls.py

from django.urls import path

from classroom.views import (HomeView, ThankYouView,

 ContactFormView, TeacherCreateView,

 TeacherListView)

app_name = 'classroom'

urlpatterns = [

 path('', HomeView.as_view(), name='home'), # path expects a function

 path('thank_you/', ThankYouView.as_view(), name='thank_you'),

 path('contact/', ContactFormView.as_view(), name='contact'),

 path('create_teacher/', TeacherCreateView.as_view(), name='create_teacher'),

 path('list_teacher/', TeacherListView.as_view(), name='list_teacher')

]

→ Connect to home.html

 <html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Home</title>

</head>

<body>

 <h1>Welcome to the Classroom</h1>

 Take me to the Classroom

 Take me to the Contact Form

 Create New Teacher Page

 List Teacher Page

</body>

</html>

Output:

→ Customizing the list view

Overriding queryset (default Teacher.objects.all()

→ queryset = Teacher.objects.order_by(‘first_name’)

class TeacherListView(ListView):

 # model_list.html

 model = Teacher

 # context_object_name = 'teacher_list'

 queryset = Teacher.objects.order_by('first_name')

56. Django DBV – DetailView

→ Create DetailView class
→ import DetailView

 from django.shortcuts import render

from django.urls import reverse_lazy

from django.views.generic import TemplateView, FormView, CreateView, ListView, DetailView

from classroom.models import Teacher

from classroom.forms import ContactForm

Create your views here.

class HomeView(TemplateView):

 template_name = "classroom/home.html"

class ThankYouView(TemplateView):

 template_name = "classroom/thank_you.html"

class TeacherCreateView(CreateView):

 model = Teacher

 # model_form.html

 # .save()

 fields = "__all__"

 success_url = reverse_lazy('classroom:thank_you')

class ContactFormView(FormView):

 form_class = ContactForm

 template_name = "classroom/contact.html"

 # success URL? It is the actual URL NOT a template.html

 # success_url = "/classroom/thank_you/"

 success_url = reverse_lazy('classroom:thank_you')

 # what to do with form

 def form_valid(self, form):

 print(form.cleaned_data)

 return super().form_valid(form) # similar to ContactForm(request.Post)

class TeacherListView(ListView):

 # model_list.html

 model = Teacher

 # context_object_name = 'teacher_list'

 queryset = Teacher.objects.order_by('first_name')

class TeacherDetailView(DetailView):

 # Main Idea: RETURN ONLY ONE MODEL ENTRY PK

 # model_detail.html

 model = Teacher

 #pk --> {{teacher}} (What pk are they actually asking for?)

→ Create template teacher_detail.html

<h1>Detail View of Teachers</h1>

{{teacher}}

→ Connect with list → teacher_list.html

<h1>List of Teachers (ListView)</h1>

 {% for teacher in object_list %}

 {{teacher.first_name}} {{teacher.last_name}}

 {% endfor %}

→ Connect to URLs
→ import TeacherDetailView class

from django.urls import path

from classroom.views import (HomeView, ThankYouView,

 ContactFormView, TeacherCreateView,

 TeacherListView, TeacherDetailView)

app_name = 'classroom'

domain.com/classroom/teacher_detail/2/

urlpatterns = [

 path('', HomeView.as_view(), name='home'), # path expects a function

 path('thank_you/', ThankYouView.as_view(), name='thank_you'),

 path('contact/', ContactFormView.as_view(), name='contact'),

 path('create_teacher/', TeacherCreateView.as_view(), name='create_teacher'),

 path('list_teacher/', TeacherListView.as_view(), name='list_teacher'),

 path('teacher_detail/<int:pk>', TeacherDetailView.as_view(), name='detail_teacher')

]

<int:pk> Input will be expected! Since it is connected with list
→ by enter the teacher it will lead you to the datail_view site
→ {{teacher.id}}! In html file

57. Django CBV – Update

It’s kind of the mix of detail view and create view

Create view → you will be filling out a form to up the information

Detail view → because a specific entry will be changed

All what we are doing here is connecting to the same form we had for create view.
Except this time, we are pre filling it with the information for a particular primary key.

→ Create UpdateView class on views.py
→ Don’t forget to import UpdateView

from django.shortcuts import render

from django.urls import reverse_lazy

from django.views.generic import TemplateView, FormView, CreateView, ListView, DetailView, UpdateView

from classroom.models import Teacher

from classroom.forms import ContactForm

Create your views here.

class HomeView(TemplateView):

 template_name = "classroom/home.html"

class ThankYouView(TemplateView):

 template_name = "classroom/thank_you.html"

class TeacherCreateView(CreateView):

 model = Teacher

 # model_form.html

 # .save()

 fields = "__all__"

 success_url = reverse_lazy('classroom:thank_you')

class ContactFormView(FormView):

 form_class = ContactForm

 template_name = "classroom/contact.html"

 # success URL? It is the actual URL NOT a template.html

 # success_url = "/classroom/thank_you/"

 success_url = reverse_lazy('classroom:thank_you')

 # what to do with form

 def form_valid(self, form):

 print(form.cleaned_data)

 return super().form_valid(form) # similar to ContactForm(request.Post)

class TeacherListView(ListView):

 # model_list.html

 model = Teacher

 # context_object_name = 'teacher_list'

 queryset = Teacher.objects.order_by('first_name')

class TeacherDetailView(DetailView):

 # Main Idea: RETURN ONLY ONE MODEL ENTRY PK

 # model_detail.html

 model = Teacher

 #pk --> {{teacher}} (What pk are they actually asking for?)

class TeacherUpdateView(UpdateView):

 # SHARE model_form.html → PK

 model = Teacher

 fields = "__all__"

 success_url = reverse_lazy('classroom:list_teacher')

→ Connect to Urls.py
→ don’t forget to import UpdateView class

from django.urls import path

from classroom.views import (HomeView, ThankYouView,

 ContactFormView, TeacherCreateView,

 TeacherListView, TeacherDetailView,

 TeacherUpdateView)

app_name = 'classroom'

domain.com/classroom/teacher_detail/2/

urlpatterns = [

 path('', HomeView.as_view(), name='home'), # path expects a function

 path('thank_you/', ThankYouView.as_view(), name='thank_you'),

 path('contact/', ContactFormView.as_view(), name='contact'),

 path('create_teacher/', TeacherCreateView.as_view(), name='create_teacher'),

 path('list_teacher/', TeacherListView.as_view(), name='list_teacher'),

 path('teacher_detail/<int:pk>', TeacherDetailView.as_view(), name='detail_teacher'),

 path('update_teacher/<int:pk>', TeacherUpdateView.as_view(), name='update_teacher')

]

→ Connect with teacher_list.html

<h1>List of Teachers (ListView)</h1>

 {% for teacher in object_list %}

 {{teacher.first_name}} {{teacher.last_name}}

 Update Information for {{teacher.first_name}}

 {% endfor %}

Output:

58. Django CBV – Delete

→ Create DeleteView class

from django.shortcuts import render

from django.urls import reverse_lazy

from django.views.generic import TemplateView, FormView, CreateView, ListView, DetailView, UpdateView,

DeleteView

from classroom.models import Teacher

from classroom.forms import ContactForm

Create your views here.

class HomeView(TemplateView):

 template_name = "classroom/home.html"

class ThankYouView(TemplateView):

 template_name = "classroom/thank_you.html"

class TeacherCreateView(CreateView):

 model = Teacher

 # model_form.html

 # .save()

 fields = "__all__"

 success_url = reverse_lazy('classroom:thank_you')

class ContactFormView(FormView):

 form_class = ContactForm

 template_name = "classroom/contact.html"

 # success URL? It is the actual URL NOT a template.html

 # success_url = "/classroom/thank_you/"

 success_url = reverse_lazy('classroom:thank_you')

 # what to do with form

 def form_valid(self, form):

 print(form.cleaned_data)

 return super().form_valid(form) # similar to ContactForm(request.Post)

class TeacherListView(ListView):

 # model_list.html

 model = Teacher

 # context_object_name = 'teacher_list'

 queryset = Teacher.objects.order_by('first_name')

class TeacherDetailView(DetailView):

 # Main Idea: RETURN ONLY ONE MODEL ENTRY PK

 # model_detail.html

 model = Teacher

 #pk --> {{teacher}} (What pk are they actually asking for?)

class TeacherUpdateView(UpdateView):

 # SHARE model_form.html --- PK

 model = Teacher

 fields = "__all__"

 success_url = reverse_lazy('classroom:list_teacher')

class TeacherDeleteView(DeleteView):

 # Form --> Confirm Delete Button

 # default template name:

 # model_confirm_delete.html

 model = Teacher

 success_url = reverse_lazy('classroom:list_teacher')

→ Connect to URLs.py

from django.urls import path

from classroom.views import (HomeView, ThankYouView,

 ContactFormView, TeacherCreateView,

 TeacherListView, TeacherDetailView,

 TeacherUpdateView, TeacherDeleteView)

app_name = 'classroom'

domain.com/classroom/teacher_detail/2/

urlpatterns = [

 path('', HomeView.as_view(), name='home'), # path expects a function

 path('thank_you/', ThankYouView.as_view(), name='thank_you'),

 path('contact/', ContactFormView.as_view(), name='contact'),

 path('create_teacher/', TeacherCreateView.as_view(), name='create_teacher'),

 path('list_teacher/', TeacherListView.as_view(), name='list_teacher'),

 path('teacher_detail/<int:pk>', TeacherDetailView.as_view(), name='detail_teacher'),

 path('update_teacher/<int:pk>', TeacherUpdateView.as_view(), name='update_teacher'),

 path('delete_teacher/<int:pk>', TeacherDeleteView.as_view())

]

→ Create html. File → teacher_confirm_delete.html

<h1>Are you sure you want to delete this teacher?</h1>

<h2>{{teacher.first_name}}</h2>

<form method="POST">

 {% csrf_token %}

 <input type="submit" value="Confirm Delete">

</form>

Output:

CAVEATS: Class-based views do not cover every specific function. Therefore, a
function-based view must be created for certain scenarios

Section 15: User Authentication and Session

59. Project Skeleton

Create a project “Library”

- Create Project Library
- Create App Catalog
- Create Templates
- Create View and import class Template View (CBV)
- Connect URLs.py (App level)
- Connect URLs.py (Project Level)
- Set app on Settings.py

60. Model Setup

Let's continue setting up our library with some models, we'll need:

- Book
- Genre
- Language
- Author
- BookInstance - Specific physical copy

Users of our library will eventually be able to check out a BookInstance, we can have
multiple BookInstances of the same Book.

- For example, multiple physical book copies of the book "Catcher in the Rye".

from django.db import models

from django.urls import reverse

Create your models here.

class Genre(models.Model):

 name = models.CharField(max_length = 150)

 def __str__(self):

 return self.name

class Language(models.Model):

 name = models.CharField(max_length=200)

 def __str__(self):

 return self.name

class Book(models.Model):

 title = models.CharField(max_length=200)

 author = models.ForeignKey('Author', on_delete = models.SET_NULL, null=True)

 summary = models.TextField(max_length=600)

 isbn = models.CharField('ISBN', max_length=13, unique=True)

 genre = models.ManyToManyField(Genre)

 language = models.ForeignKey('Language', on_delete = models.SET_NULL, null =True)

 def __str__(self):

 return self.title

 def get_absolute_url(self):

 return reverse("book_detail", kwargs={"pk": self.pk})

class Author(models.Model):

 first_name = models.CharField(max_length=200)

 last_name = models.CharField(max_length=200)

 date_of_birth = models.DateField(null=True, blank=True)

 class Meta:

 ordering = ['last_name', 'first_name']

 def get_absolute_url(self):

 return reverse("author_detail", kwargs={"pk": self.pk})

 def __str__(self):

 return f"{self.last_name}, {self.first_name}"

import uuid

class BookInstance(models.Model):

 id = models.UUIDField(primary_key=True, default=uuid.uuid4)

 book = models.ForeignKey('Book', on_delete= models.RESTRICT, null=True)

 imprint = models.CharField(max_length=200)

 due_back = models.DateField(null=True, blank=True)

 LOAN_STATUS = (

 ('m', 'Maintenance'),

 ('o', 'On Loan'),

 ('a', 'Available'),

 ('r', 'Reserved')

)

 status = models.CharField(max_length=1, choices=LOAN_STATUS, blank=True, default='m')

 class Meta:

 ordering = ['due_back']

 def __str__(self):

 return f'{self.id} ({self.book.title})' # type: ignore

Book and author should have his own model!!

An author can have written many books! So we can link with ForeignKey to the books
that they have written

What happens if delete this book?

Would you also delete the author, or would you delete the book if you happened to
delete the author? one way or the other.
If you happen to on_delete the author you will set it as null for this book

CASCADE is the other method → IF author will be deleted the book will be as well

Class Meta:
→ dictate behavior inside the admin view
→ for instance sorted by ordered by

get_absolute_url(self)
→ Its going to return the URL to access a record for this book

Many to many connections:
models.ManyToManyField(class)
if a model has more model connection at the same time
→ genre = models.ManyToManyField(Genre)

Import uuid:
→Unique identifier generator
→ It just generate the unique ID

So essentially what’s happening here is the book instance represents a specific copy of
a book that someone might borrow and includes information maybe about whether the
copies available or what date it’s actually expected back
So we should know, hey this particular book is actually checked out for the library

RESTRICT
→ This essentially restricts you from deleting a book if you still have a book instead

→ So, what happens when you actually do a deletion of a book?
So, you have to delete all the book instances first before you’re allowed to delete that
book

61. Admin Setup

Let's now:

- Register our Models
- Create a Superuser
- Create Example Instances

from django.contrib import admin

from catalog.models import Author, Genre, Language, Book, BookInstance

Register your models here.

admin.site.register(Author)

admin.site.register(Genre)

admin.site.register(Language)

admin.site.register(Book)

admin.site.register(BookInstance)

→ python manage.py createsuperuser
User: admin
Password: password

Create example Instances on admin page

62. Page Setup

→ Create IndexView and set context (attributes)

from django.shortcuts import render

from django.views.generic import TemplateView, CreateView

from catalog.models import Book, Author, BookInstance, Genre, Language

Create your views here.

class IndexView(TemplateView):

 template_name = 'catalog/index.html'

 # Attribute!

 extra_context = {'num_books': Book.objects.all().count(),

 'num_instances': BookInstance.objects.all().count(),

 'num_instances_avail': BookInstance.objects.filter(status__exact = 'a').count()}

 # Alternative in CBV with method

 # def get_context_data(self, **kwargs):

 # context = super().get_context_data(**kwargs)

 # context['num_books'] = Book.objects.all().count()

 # context['num_instances'] = BookInstance.objects.all().count()

 # context['num_instances_avail'] = BookInstance.objects.filter(status__exact = 'a').count()

 # return context

 # FBV

def index(request):

 # num_books = Book.objects.all().count()

 # num_instances = BookInstance.objects.all().count()a

 # num_instances_avail = BookInstance.objects.filter(status__exact = 'a').count()

 # context = {

 # 'num_books': num_books,

 # 'num_instances': num_instances,

 # 'num_instances_avail': num_instances_avail

 # }

 # return render(request, 'catalog/index.html', context = context)

Difference between get_context_data vs extra_context

→ Continue with index.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Home</title>

</head>

<body>

 <h1>Index HTML HALLOOO</h1>

 <p> Total Books: {{num_books}}</p>

 <p> Num Available: {{num_instances_avail}}</p>

</body>

</html>

Output:

→ Create Class BookCreate and inherit from CreateView

HINT: import CreateView

from django.views.generic import TemplateView, CreateView

class BookCreate(CreateView): #model_form.html

 model = Book

 fields = '__all__'

→ Create model_form.html

<h1> Create a new Book</h1>

<form method="Post">

 {% csrf_token %}

 {{form.as_p}}

 <input type="submit" value='CREATE'>

</form>

Output:

→ Create DetailView

from django.shortcuts import render

from django.urls import reverse_lazy

from django.views.generic import TemplateView, CreateView, DetailView

from catalog.models import Book, Author, BookInstance, Genre, Language

Create your views here.

class IndexView(TemplateView):

 template_name = 'catalog/index.html'

 # Attribute!

 extra_context = {'num_books': Book.objects.all().count(),

 'num_instances': BookInstance.objects.all().count(),

 'num_instances_avail': BookInstance.objects.filter(status__exact = 'a').count()}

 # Alternative in CBV with method

 # def get_context_data(self, **kwargs):

 # context = super().get_context_data(**kwargs)

 # context['num_books'] = Book.objects.all().count()

 # context['num_instances'] = BookInstance.objects.all().count()

 # context['num_instances_avail'] = BookInstance.objects.filter(status__exact = 'a').count()

 # return context

 # FBV

def index(request):

 # num_books = Book.objects.all().count()

 # num_instances = BookInstance.objects.all().count()a

 # num_instances_avail = BookInstance.objects.filter(status__exact = 'a').count()

 # context = {

 # 'num_books': num_books,

 # 'num_instances': num_instances,

 # 'num_instances_avail': num_instances_avail

 # }

 # return render(request, 'catalog/index.html', context = context)

class BookCreate(CreateView): #model_form.html

 model = Book

 fields = '__all__'

 # success_url = reverse_lazy('catalog:index')

 # Default --> DetailView

class BookDetail(DetailView):

 model = Book

→ Connect to Urls.py

from django.urls import path

from . import views

app_name = 'catalog'

urlpatterns = [

 # path('', views.index, name='index')

 path('', views.IndexView.as_view(), name='index'),

 path('create_book/', views.BookCreate.as_view(), name='create_book'),

 path('book/<int:pk>', views.BookDetail.as_view(), name = 'book_detail')

]

Output:

63. User Authentication with Django User Model

We've set up some very simple views and skeleton code for the basis of our Library
website.

Clearly, we could keep adding more views/templates/urls to add more pages, but let's
focus on adding users.

→ On admin site
→ Create Group
→ Create User

→ Create Templates on project level
Registration and logging in… don’t happen at an application level
It happens at a site level, which is why underneath templates a default registration
folder has to be created!

→ CREATE login.html underneath registration

→ Connect with URL.py

from django.contrib import admin

from django.urls import path, include

from django.views.generic import RedirectView

urlpatterns = [

 path('admin/', admin.site.urls),

 path('catalog/', include('catalog.urls')),

 path('', RedirectView.as_view(url='catalog/')),

 path('accounts/', include('django.contrib.auth.urls'))

]

RedirectView → lead to default catalog

Different function with accounts/ ….

accounts/ login/ [name= 'login']
accounts/ logout/ [name= 'logout']
accounts/ password change/ [name= 'password_change']
accounts/ password change/done/ [name= 'password change_done]
accounts/ password reset/ [name= 'password_reset']
accounts/ password reset/done/ [name= 'password _reset_done']
accounts / reset/<uidb64>/<token>/ [name= 'password _reset_confirm'] accounts/
reset/done/ [name= 'password_reset_complete j

→ Set settings.py and import os
→ [os.path.join(BASE_DIR, ‘templates’)]

→ create content on login.html

{% comment %} check errors {% endcomment %}

{% if form.erros %}

 <p> Your username or password was incorrect. Try again.</p>

{% endif %}

{% if next %}

 {% if user.is_authenticated %}

 <p> You dont have permission for this page</p>

 {% else %}

 <p> Please login to see this page </p>

 {% endif %}

{% endif %}

<form method='POST' action="{% url 'login' %}">

{% csrf_token %}

{{form.username.label_tag}}

{{form.username}}

{{form.password.label_tag}}

{{form.password}}

<input type="submit" value='login'>

<input type="hidden" name='next' value="{{next}}">

</form>

{% comment %} -----USER logged in but no access

----USER not logged in

---- FORM LOGGIN{% endcomment %}

is_authenticated:

Read-only attribute which is always True (as opposed to
AnonymousUser.is_authenticated which is always False). This is a way to tell if the user

has been authenticated. This does not imply any permissions and doesn’t check if the
user is active or has a valid session. Even though normally you will check this attribute
on request.user to find out whether it has been populated by the
AuthenticationMiddleware (representing the currently logged-in user), you should know
this attribute is True for any User instance.

Output:

http://127.0.0.1:8000/accounts/login/

→ It takes you to : accounts/profile/

→ SET settings.py

STATIC_URL = 'static/'

Default primary key field type

https://docs.djangoproject.com/en/4.1/ref/settings/#default-auto-field

DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'

LOGIN_REDIRECT_URL = '/'

Try to login again it leads you to catalog base template → index.html

HINT: without having RedirectView add:

LOGIN_REDIRECT_URL = '/catalog'

http://127.0.0.1:8000/accounts/login/

64. User Authentication on Views

→ Add if condition for log in and logout in index.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Home</title>

</head>

<body>

 <h1>HOMEPAGE</h1>

 <p> Total Books: {{num_books}}</p>

 <p> Num Available: {{num_instances_avail}}</p>

 {% if user.is_authenticated %}

 <p> You are logged in </p>

 <p> Welcome: {{ user.get_username}} </p>

 {% else %}

 <p> You are not logged in </p>

 {% endif %}

</body>

</html>

→ logging to the system

→ Create logged_out.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Home</title>

</head>

<body>

 <p> You have logged_out.html </p>

 CLick here to Login!

</body>

</html>

I already checking if user is authenticated
I do not want to show a log out button if the user hasn’t logged in yet. Be careful when
you’re designing your pages and templates that you are always displaying a logout or
login button. That should actually be conditionally chosen based off if the user is
authenticated or not.

In index.hmtl → If user is authenticated they are logged in. Welcome User and give user
the possibility to log out!

Lots different ways I can do this

One simple way:

We create the login and logout link URLs using the url template tag and the names of
the respective URL configurations. Note also how we have appended ?next={{
request.path }} to the end of the URLs. What this does is add a URL parameter next
containing the address (URL) of the current page, to the end of the linked URL. After the
user has successfully logged in/out, the views will use this "next" value to redirect the
user back to the page where they first clicked the login/logout link

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Authentication

→ On index.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Home</title>

</head>

<body>

 <h1>HOMEPAGE</h1>

 <p> Total Books: {{num_books}}</p>

 <p> Num Available: {{num_instances_avail}}</p>

 {% if user.is_authenticated %}

 <p> You are logged in </p>

 <p> Welcome: {{ user.get_username}} </p>

 Logout Here

 {% else %}

 <p> You are not logged in </p>

 Login Here

 {% endif %}

</body>

</html>

With next method:

On both login and logout Django will take you back to the homepage

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Authentication

→ By login out

→ Without having the next method it takes you to the logged_out.

What is better? Depends on how you want it!

FBV Lock webpages with Logging requirements!

→ Using Decorater
→ Create new html file
→ my_view.html

<h1> Only Logged In User can see the content </h1>

→ On views.py import:

from django.contrib.auth.decorators import login_required

@login_required

def my_view(request):

 return render(request, 'catalog/my_view.html')

→ Connect to URLs

Without @login_required decorator!

With @login_required decorator!

Doesn’t let the user see the content anymore!
After login it let you see the content again!

CBV Lock webpages with Logging requirements!

→ Import LoginRequiredMixin

from django.contrib.auth.mixins import LoginRequiredMixin

→ Inherit from class

class BookCreate(LoginRequiredMixin,CreateView): #model_form.html

 model = Book

 fields = '__all__'

 # success_url = reverse_lazy('catalog:book_detail')

 # Default --> DetailView

→ by enter /catalog/create_book

→ You have to Login to create a book!!

65. User Registration and Forms

→ Registration an User with class based forms

Import UserCreationForm:

from django.contrib.auth.forms import UserCreationForm

→ Create a class with CreateView

class SignUpView(CreateView):

 form_class = UserCreationForm

 success_url = reverse_lazy('login')

 template_name = 'catalog/signup.html'

→ Connect Urls.py

from django.urls import path

from . import views

app_name = 'catalog'

urlpatterns = [

 # path('', views.index, name='index')

 path('', views.IndexView.as_view(), name='index'),

 path('create_book/', views.BookCreate.as_view(), name='create_book'),

 path('book/<int:pk>', views.BookDetail.as_view(), name = 'book_detail'),

 path('myview/', views.my_view, name= 'myievw'),

 path('signup/', views.SignUpView.as_view(), name='signup')

]

→ Create Template signup.html

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Register</title>

</head>

<body>

 <h1>Register New User Here</h1>

 <form method="POST">

 {% csrf_token %}

 {{form.as_p}}

 <input type="submit" value="Signup">

 </form>

</body>

</html>

66. User Specific Page

Creating specific page for a user

On models.py

from django.contrib.auth.models import User

→ add borrower and use User

class BookInstance(models.Model):

 id = models.UUIDField(primary_key=True, default=uuid.uuid4)

 book = models.ForeignKey('Book', on_delete= models.RESTRICT, null=True)

 imprint = models.CharField(max_length=200)

 due_back = models.DateField(null=True, blank=True)

 borrower = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, blank=True)

 LOAN_STATUS = (

 ('m', 'Maintenance'),

 ('o', 'On Loan'),

 ('a', 'Available'),

 ('r', 'Reserved')

)

 status = models.CharField(max_length=1, choices=LOAN_STATUS, blank=True, default='m')

 class Meta:

 ordering = ['due_back']

 def __str__(self):

 return f'{self.id} ({self.book.title})' # type: ignore

→ makemigrations

→ run migrate

→ Change book instance on admin view site

→ Borrower: myuser

Set up a page where myuser can log in an then actually see the books that they
have checked out

class CheckedOutBooksByUserView(LoginRequiredMixin, ListView):

 # List all BookInstances But I will filter based off currently logged in user session

 model = BookInstance

 template_name = 'catalog/profile.html'

 paginate_by = 5 # 5 book instances per page

 def get_queryset(self):

 return BookInstance.objects.filter(borrower = self.request.user)

→ Explanation:

def get_queryset(self):

 return BookInstance.objects.filter(borrower = self.request.user)

Essentially all that means is when a person is logged in and they are able to reach this
template profile.html then their request as they visit that page is going to have their user
information

You can order by something

→ connect to urls.py

from django.urls import path

from . import views

app_name = 'catalog'

urlpatterns = [

 # path('', views.index, name='index')

 path('', views.IndexView.as_view(), name='index'),

 path('create_book/', views.BookCreate.as_view(), name='create_book'),

 path('book/<int:pk>', views.BookDetail.as_view(), name = 'book_detail'),

 path('myview/', views.my_view, name= 'myievw'),

 path('signup/', views.SignUpView.as_view(), name='signup'),

 path('profile/', views.CheckedOutBooksByUserView.as_view(), name ='profile')

]

→ Create profile.html

{% comment %} bookinstance_list generic --> Listview {% endcomment %}

<h1> Welcome to your profile </h1>

<h2> Here are your books checked out: </h2>

{% for book in bookinstance_list %}

 <p>{{book}}</p>

{% endfor %}

Output:

Section 16: Django Linode Deployment

67. Introduction Linode Deployment

Let's explore how to deploy our Django application to the web so anyone can visit our
site!

Let's think about our key requirements...

Key Requirements:

- Anyone can visit our website online.
- We don't want to concern ourselves about uptime or resiliency.
- Need to support Python/Django.
- Need to connect to cloud server.
- Need to be able to push updates to our code and have version control.

Cloud Service Provider:

- Hosts a computer/server with our Django application.
- There are many cloud service providers!
- Often it is a trade-off between ease of use and price.

Cloud Service Provider:

- A cloud provider with an nice balance between price and ease of use is Linode.

- We can use Linode to setup an online server that contains our Django Web
Application.

Pierian Data Link for $100 Linode Credit:
www.linode.com/Ip/try/?ifso=pierian

IMPORTANT NOTE:

- Any major cloud service provider will require your credit card information in case
you go beyond the credit or free tier limits.

- By continuing with this section of the course, you understand that you may be
charged if you exceed the limits.

IMPORTANT NOTE:

- What we show in this lecture should easily fall within the $100 credit limit, but
cloud services charge monthly, and eventually the credits will be used up!

IMPORTANT NOTE:

- If you have any questions on pricing or charge information, contact your cloud
hosting provider.

- We will NOT give any advice regarding payments or credit limits.

Version Control:

- We want a way to edit our websites code and keep track of changes.
- For this we use a system called git that keeps track of versions, and we use

GitHub to store our code.

http://www.linode.com/Ip/try/?ifso=pierian

- We'll start off by setting up our DjangoWeb Application using Linode's
marketplace.

- This will do a lot of setup work for us automatically, by starting a new Django
project and linking it to an IP address on the web at a port.

68. Linode Setup

69. SSH Connection

- SSH (Secure SHell) allows us to securely connect to the Linode server that is
hosting our Django project.

- We don't want just anybody to be able to visit this computer without permission,

so we do it through SSH which requires the password you setup during the
Linode Setup process in the previous lecture.

- SSH can be intimidating for first time users, but it's actually a simple way of
connecting to a computer through the internet securely.

- Just point to the computer (IP Address) and confirm permission through the
Password.

- Once we connect through SSH, we'll have access to the Debian Linux shell

located at our Linode Server.

- This means we'll be able to use Linux Commands at the Terminal for installations
and setups.

Important Note!

→ Detailed instructions on connecting to Linode through SSH:
- www.linode.com/docs/guides/ connect-to-server-over-ssh-on-mac/
- www.linode.com/docs/guides/ connect-to-server-over-ssh-on-wind ows/

→ We'll quickly install OpenSSH Client on a Windows machine, get SSH access, and
then all users can follow along at the Debian terminal with the same commands.

70. Version Control with git and GitHub

The final step is to be able to store a copy of our code on GitHub (either public or
private) and then update our server's

Django project code with any code we've updated on GitHub.
Create a free GitHub account before continuing.

Important Note:

- This lecture assumes some very basic knowledge of git and GitHub and its

overall use for version control. 
- If you have never used GitHub or git before, do the GitHub tutorial first!

docs.github.com/en/get-started/ quickstart/hello-world

We'll need to perform the following steps:

- SSH Connection to Linode Server
- Install git on Linode

- Create GitHub Repository 
- Connect Linode git repo to GitHub
- Connect to Github Repo Locally
- Push/Pull Changes from LocalComputer to Linode Server

	Section 8: Introduction to Django Framework
	1. Introduction to Django Framework
	2. How Django works
	3. First Django Project
	4. First Django Application (Apps)

	Section 9: Django – Views, Routing, and URLs
	5. Introduction Views, Routing and URLs
	6. Project Application Exercise
	7. Views and URLs Overview
	8. Function Based Views – Basics
	9. Dynamic Views – Routing Logic
	10. Path converters
	11. Using ResponseNotFound and 404 Pages
	12. Redirects Basics
	13. Reverse URLs and URL Names
	14. Connecting a View to a Template

	Section 10: Django – Templates
	15. Django and Templates
	16. Template Directories (Important)
	17. Variables in Templates
	18. VS Code Django Extension
	19. Filters
	20. Tags – For Loops
	21. Tags – If, Elif, Else
	22. Tags and URL Names in Templates
	23. Templates Inheritance
	24. Custom Error Templates
	25. Static Files

	Section 11: Django – Models, Database, and Queries
	26. Introduction to Models and Database
	27. Databases Overview
	28. Models and Database
	29. Models and Fields
	30. Migration
	31. Data Interaction: Creating and Inserting
	32. Data Interaction: Using .all() Reading and Querying
	33. Data Interaction: Filtering filter() and get()
	34. Data Interaction: Filtering with Field lookups
	35. Data Interaction: Updating Models
	36. Data Interaction: Updating Entries
	37. Data Interaction: Deleting
	38. Connecting Templates and Database Models

	Section 12: Django – Admin
	39. Introduction to Django Admin Section
	40. Model and Website – Part one
	41. Model and Website: Part Two
	42. Django Administration
	43. Django Admin and Models

	Section 13: Django Forms
	44. Introduction to Django Forms Section
	45. GET, POST, and CSRF Overview
	46. Django Form Class Basics
	47. Django Forms – Templates Rendering
	48. Django Forms – Widget and Styling
	49. Django – ModelForm Class
	50. Django – ModelForms Customization

	Section 14: Django Class Based Views
	51. Introduction to Class Based Views
	52. Django CBV – TemplateView
	53. Django CBV – FormView
	54. Django CBV – CreateView
	55. Django CBV – ListView
	56. Django DBV – DetailView
	57. Django CBV – Update
	58. Django CBV – Delete

	Section 15: User Authentication and Session
	59. Project Skeleton
	60. Model Setup
	61. Admin Setup
	62. Page Setup
	63. User Authentication with Django User Model
	64. User Authentication on Views
	65. User Registration and Forms
	66. User Specific Page

	Section 16: Django Linode Deployment
	67. Introduction Linode Deployment
	68. Linode Setup
	69. SSH Connection
	70. Version Control with git and GitHub

